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葉序的な螺旋タイリングの幾何学

T11D001 須志田 隆道

概要

植物の葉や種などの原基 (Primordia)の配置を葉序 (Phyllotaxis)という. ひまわりや松笠などの
典型的な植物に現れる螺旋葉序の特徴は, 黄金比 τ = 1+

√
5

2 や Fibonacci数 1, 1, 2, 3, 5, 8, 13, · · · で
記述されることである. 葉序の数学的な理論の研究は, 19世紀前半の Bravais兄弟らによる円筒モ
デル (線形モデル)の研究から始められ, 物理学者Vogelによって提案されたモデルを基盤とする円
板モデル (非線形モデル)の研究が展開されている. 本論文の主題は, 円板モデルの問題であるボロ
ノイ螺旋タイリングおよび三角形螺旋タイリングを包括的に記述することである.
はじめに, 円筒 C/Z上の螺旋格子 Λ(ξ) = ξZ (mod 1), ξ = x + iy ∈ C, y > 0を母点集合とす

るボロノイ図として得られるタイリングを考える. xを固定したとき, yの単調減少とともに変化す
る組合せ的構造の分岐過程は xの連分数近似によって説明される. その分岐図はボロノイ図が退化
した長方形タイリングを作る複素数 ξが属する円弧の和集合である. さらに, 分岐過程の各分岐点
で得られる長方形タイリングのタイルの極限形状を考える. もし xが固定された二次無理数ならば,
y → 0としたとき, 長方形タイルの縦横比の極限集合は二次無理数で記述される有限集合である. 葉
序の分野では, 黄金比 τ に対等な無理数を noble numberという. もし xが noble numberならば,
長方形タイルの形状は正方形に収束することが示される. 長方形タイルの極限形状に関する結論は,
RothenとKochによる the shape invariance under compressionに数学的な拡張を与える.
複素指数函数 exp : C → C\{0}によって, 円筒C/Zの格子Λ(ξ)は一つの複素数 ζ = eξ で生成さ
れる平面 C\{0}の螺旋格子 S = {ζj}j∈Zに移る. 次に, 平面 C∗の螺旋格子 Sを母点集合とするボ
ロノイ螺旋タイリングを考える. Arg(ζ)を固定したとき, 0 < r < 1の単調増加とともに変化する組
合せ的構造の分岐過程は Arg(ζ)/2πの連分数近似によって説明される. ここで, −π < Arg(z) ≤ π
は z ∈ C\{0}の偏角の主値を表す. 円筒C/Zのボロノイタイリングでは, 組合せ的構造の分岐図が
円弧の和集合であったが, ボロノイ螺旋タイリングの組合せ的構造の分岐図は, Arg(ζ)をパラメー
タとする実代数曲線の枝の和集合であり, 各枝に属する複素数 ζは, ボロノイ図が退化した四角形タ
イリングを作る. さらに, 分岐過程の各分岐点で得られる四角形タイリングのタイルの極限形状を
考える. Arg(ζ)/2πを固定された二次無理数ならば, 縦横比が線形に近似され, 円筒 C/Zのボロノ
イタイリングの場合と同様の結論が得られる.
最後に, 平面C\{0}の螺旋格子 Sを頂点集合とする三角形螺旋タイリングを考える. 三角形螺旋
タイリングは, 2005年に日詰明男氏 (造形作家)によって, ひまわりの葉序がもつ数学的エッセンス
を抽出した幾何学的造形物として考案された. 三角形螺旋タイリングには, Arg(ζ)/2πの連分数近似
によって説明される opposed parastichy pairsをもつタイリングとそうでないものがある. opposed
parastichy pairsをもつ三角形螺旋タイリングを作る生成元 ζの集合はArg(ζ)をパラメータとする
実代数曲線の枝の和集合である. 一方, non-opposed parastichy pairsをもつ三角形螺旋タイリング
を作る生成元 ζ の集合は |ζ|をパラメータとする実代数曲線の枝の和集合であり, それは単位円板
Dの稠密部分集合を与える. さらに, opposed parastichy pairsをもつ三角形螺旋タイリングについ
て, 三角形タイルの極限形状を考える. ボロノイ螺旋タイリングの場合と同様に, Arg(ζ)/2πが固定
された二次無理数ならば, 三角形タイルの線分比は線形に近似され, 円筒 C/Zのボロノイタイリン
グの場合と同様の結論が得られる. 特に, Arg(ζ)/2πが noble numberならば, 極限集合は黄金比 τ
で記述される.
本論文のボロノイ螺旋タイリングおよび三角形螺旋タイリングに関する各証明は, 平面C\{0}の
被覆空間のタイリングとして定義される多重タイリングのもとで与えられる.
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Geometry of Phyllotactic Spiral Tilings

T11D001 Takamichi Sushida

Abstract

Phyllotaxis is the regular arrangements of primordia of leaves and other organs of plants.
Typical phyllotactic patterns form the spiral structures described by the golden section τ = 1+

√
5

2
and the Fibonacci numbers 1, 1, 2, 3, 5, 8, 13, · · · . In early half of the 19th century, the classical
subject of geometrical phyllotactic patterns was started from the study of the cylindrical model
(the linear model) by Bravais brothers. Moreover, it has studied as a multidisciplinary subject
which contains the study of the disk model (the non-linear model) based on the mathematical
model by Vogel. The main subject of the thesis is to describe comprehensively Voronoi spiral
tilings and triangular spiral tilings.

First, we consider a tiling given as a Voronoi diagram with the spiral lattice Λ(ξ) = ξZ(mod 1),
ξ = x+ iy ∈ C, y > 0 of the cylinder C/Z. We show that a bifurcation process of combinatorial
structures by monotone decreasing of y > 0 as x is fixed, is explained by the continued fraction
of x. A bifurcation diagram of combinatorial structures is the union of arcs. A complex number
ξ on each arc produces a rectangle tiling. Moreover, we consider limit sets of aspect ratios of
rectangular tiles. If x is a fixed quadratic irrational, then the limit set given by y → 0 is a finite
set written by quadratic irrationals. In the phyllotaxis theory, an irrational number which is
linearity equivalent of τ plays a vital role, and it is called the noble number. In particular, if x
is a noble number, then the limit shape is the square. This is an extended result to the shape
invariance under compression by Rothen and Koch.

By the complex exponential function exp : C → C\{0}, Λ(ξ) of C/Z is mapped as the spiral
lattice S = {ζj}j∈Z of the punctured plane C\{0} generated by ζ = eξ. Second, we consider
the Voronoi spiral tilings with S of C∗. We show that a bifurcation process of combinatorial
structures by monotone increasing of 0 < r < 1 as Arg(ζ)/2π is fixed, is explained by the
continued fraction of Arg(ζ)/2π, where −π < Arg(z) ≤ π denotes the principal argument of
z ∈ C\{0}. A bifurcation diagram of combinatorial structures for Voronoi spiral tilings is the
union of branches of real algebraic curves parameterized by Arg(ζ). A complex number ζ on
each branch produces a quadrilateral tiling. Moreover, we consider limit sets of aspect ratios of
quadrilateral tiles. If Arg(ζ)/2π is a fixed quadratic irrational, then the aspect ratios are written
by the linear approximation, and we obtain the same results as Voronoi tilings on C/Z.

Finally, we consider the triangular spiral tilings with S of C\{0}. The triangular spiral
tilings was devised as geometrical architectures with phyllotactic patterns by Akio Hizume. The
set of generators ζ which produce triangular spiral tilings with opposed parastichy pairs, is the
union of branches of real algebraic curves parameterized by Arg(ζ). On the other hand, a set
of generators ζ which produce triangular spiral tilings with non-opposed parastichy pairs, is the
union of branches of real algebraic curves parameterized by |ζ|, and it gives a dense subset of D.
Next we consider limit sets of line segment ratios of tiles for triangular spiral tilings with opposed
parastichy pairs. In the same way as the Voronoi spiral tilings, if Arg(ζ)/2π is a fixed quadratic
irrational, then the line segment ratios are written by the linear approximation, and we obtain
the same results as Voronoi tilings on C/Z. In particular, if Arg(ζ)/2π is a noble number, then
the limit set is written by τ .

Throughout the thesis, the proofs of the Voronoi spiral tilings and the triangular spiral tilings
are given under multiple tilings defined as a tiling of a covering space of the punctured plane C∗.
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葉序的な螺旋タイリングの幾何学
T11D001 須志田 隆道

学位論文の要旨

植物の葉や種などの原基 (Primordia)の配置を葉序 (Phyllotaxis)という. ひまわりや松笠などの
典型的な植物の葉序がもつ特徴は, 黄金比 τ = 1+

√
5

2 や Fibonacci数 1, 1, 2, 3, 5, 8, 13, · · · で記述さ
れる螺旋構造を形成することである. 本論文の主題は, 円板上の問題であるボロノイ螺旋タイリン
グおよび三角形螺旋タイリングを包括的に記述することである.

研究の背景

葉序の数学的な理論の研究は, 19世紀前半の Bravais brothersらの研究から始まった. 非常に複
雑な構造をもつ葉序の数学的な構造を解明するために, 単純化された円筒上モデル (線形モデル)お
よび円板モデル (非線形モデル)がそれぞれ研究された. 円筒モデルの研究では, 加法群が推移的
に作用する点列を母点集合とするボロノイタイリングの組合せ的構造が回転角の連分数近似によっ
て説明され, その分岐過程が力学系の観点から記述された. 一方, 円板モデルの研究では, 1979年
に物理学者 Vogelによって提案されたひまわりの頭状花にある筒状花の螺旋模様に対応する点列
V = {φj(r)ei·jθ}j∈N, φj(r) = r

√
j, r > 0, θ ∈ R を母点集合とするボロノイタイリングについて,

準結晶構造の観点からからその組合せ的構造を説明した研究がある. さらに, 葉序の幾何学モデル
の研究に加え, 生物学的な根拠を考慮したモデル方程式の研究がある. 最近では, 生物学的な研究の
進展により, 細胞間における植物ホルモン「オーキシン」の輸送が黄金比やフィボナッチ数で記述
される生物学的機構の一つであることが発見され, 対応するモデル方程式が提案されている.
一方で, 造形作家 日詰明男氏によって考案されたひまわりの葉序の数学的エッセンスを抽出した
幾何学的造形物がある. 1987年に日詰氏は, フィボナッチ・タワーと呼ばれる幾何学的建築物を考
案した. これは, 擬球面上にひまわりの頭状花にある筒状花の螺旋模様を模したものである. 日詰氏
はさまざまなワークショップなどで竹を用いた巨大なフィボナッチ・タワーを建造した. 2005年に
日詰氏は, フィボナッチ・タワーの土台として, フィボナッチ・トルネードと呼ばれる三角形螺旋タ
イリングを考案した. これは, 原点を除いた平面 C∗において, 黄金比 τ で記述される相似変換群が
推移的に作用するタイリングであり, 原点を除いた円板モデルとして捉えることができる. さらに,
フィボナッチ・トルネードに関するもう一つの話題として, 折り紙による造形物がある. 日詰氏は
折紙作家 布施知子氏によって考案されたねじれ多重塔と呼ばれる折り紙の作品を参考にして, 2005
年にフィボナッチ・トルネードを 1枚の紙で製作することに成功した.

研究の内容

本論文では, 単位円板 D内の一つの複素数 ζ = reiθ ∈ D\R で生成される平面 C∗ := C\{0}の相
似変換群 S = {ζj}j∈Zが推移的に作用するボロノイ螺旋タイリングおよび三角形螺旋タイリングを
位相幾何学的な観点から考える.
本論文は次の 5章から構成されている. 各章ごとに, 独立した記号を用いる.
第 1章では, 研究の背景および論文の構成が述べられている.
第 2章では, 円板上の問題を考えるための準備として, 葉序の分野でよく知られている円筒 C/Z

のボロノイ図として得られるタイリングの分岐構造を記述する. ここで, タイリングの理論に従い,
二次元多様体X のタイリングは, topological disk Tj ⊂ X の族 T = {Tj}j であり, かつX =

∪
j Tj

and int(Tj) ∩ int(Tk) = ∅, j 6= kを満たすものと定める. 平面 C上の格子 Λ(z) := zZ + Z, z ∈ C,
Im(z) > 0 を母点集合とするボロノイ図 V(z) := {V (λ)}λ∈Λ(z),

V (λ) = V (λ; z) := {ζ ∈ C : |ζ − λ| ≤ |ζ − λ′|, ∀λ′ ∈ Λ(z)}

がCのタイリングであることは容易に示される. CのボロノイタイリングV(z)は,射影π : C → C/Z
によって, π(z)で生成される加法群 π(zZ + Z) = π(z)Zが推移的に作用する族 T (z) := {T (λ) :=
π(V (λ))}λ∈Λ(z),

T (λ) := {ζ ∈ C/Z : dist(ζ, π(λ)) ≤ dist(ζ, π(λ′)), ∀λ′ ∈ Λ(z)}, λ ∈ Λ(z).
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である. E := {z ∈ C : |z − 1
2 | <

1
2}, H := {z ∈ C : Im(z) > 0}とする. もし z 6∈ Z + H ∩Eならば

T (z)は円筒 C/Zのタイリングでなく, もし z ∈ Z + H ∩ Eならば T (z)は円筒 C/Zのタイリング
である. 円筒 C/Z上のボロノイタイリング T (z)について, 以下が成り立つ.

• T (z)のタイル T (λ) (λ ∈ Λ(z))の形状は六角形もしくは長方形である.

• Re(z)を固定したとき, Im(z)の単調減少による T (z)の組合せ的構造の分岐過程は, Re(z)の
連分数展開で説明される.

• 長方形タイリングを作る z ∈ Cの集合は円弧の和集合である.

• 長方形タイルの形状パラメータ (縦横比)はRe(z)の連分数展開によって記述される. さらに,
Re(z)が二次無理数とし, Im(z) → 0とするとき, 長方形タイルにおける形状パラメータの極
限集合は二次無理数で記述される有限集合であることが示される. 特に, Re(z)が黄金比 τ に
対等な無理数ならば長方形タイルの極限形状は正方形であることが示される. 長方形タイル
の極限形状に関する結論は, RothenとKochによる the shape invariance under compression
に数学的な拡張を与える.

第 3章では, 平面C∗の被覆空間である開リーマン面Mv上の ζ = reiθ ∈Mv, 0 < r < 1 で生成さ
れる螺旋点列 S = {ζj}j∈Z ⊂ Mv を母点集合とするボロノイ螺旋多重タイリング T := {Tj}j∈Zを
考える. ここで, v 6= 0は整数である. Mv のボロノイ螺旋多重タイリング T について, 以下が成り
立つ.

• T のタイル Tj (j ∈ Z)の形状は六角形もしくは四角形である.

• θ/2πvを固定したとき, 0 < r < 1の単調増加による T の組合せ的構造の分岐過程は, θ/2πv
の連分数展開で説明される.

• 四角形ボロノイ螺旋多重タイリングを作る ζ ∈ Mv の集合は, 単位円板 D内において, θをパ
ラメータとする実代数曲線の枝の和集合Bvである. さらに, 和集合

∪
v>0Bvは単位円板Dの

稠密部分集合を与える.

• θ/2πvを固定された二次無理数とし, r → 1とするとき, 四角形タイルの形状パラメータ (縦
横比)の近似式は θ/2πvの連分数展開によって記述され, その極限集合は二次無理数で記述さ
れる有限集合であることが示される. 特に, θ/2πvが黄金比 τ に対等な無理数ならば四角形タ
イルの極限形状は正方形であることが示される.

数学的な結論は円筒C/Z上のボロノイタイリングに似ているが, ボロノイ螺旋多重タイリングは円
板上の問題であるため, 数学的な議論の展開が複雑である.
第 4章では, 螺旋点列 Sを頂点集合とする三角形螺旋タイリングを考える. はじめに, 平面 C∗の
被覆空間 Cv = C/2πviZのタイリングとして螺旋多重タイリングを定義する. ここで, v 6= 0は整
数である. 次に, T0 := �(1, ζm, ζm+n, ζn)がこの順番で頂点が並ぶC∗の四角形であるならば, 四角
形の族 T = {Tj := �(ζj , ζj+m, ζj+m+n, ζj+n)}j∈Zは, 多重度 v := |nArg(ζm) −mArg(ζn)| をもつ
平面 C∗ の螺旋多重タイリングであることが示される. ここで, −π < Arg(z) ≤ πは z ∈ C∗ の偏
角の主値を表す. 葉序の分野では, 四角形螺旋多重タイリング T の組合せ的指標 {m,n}において,
Arg(ζm)Arg(ζn) < 0となるとき, {m,n}を opposed parastichy pairといい, Arg(ζm)Arg(ζn) > 0
となるとき, {m,n}を non-opposed parastichy pairという. 次に, 四角形螺旋多重タイリング T の
opposed parastichy pair{m,n}が θ/2πvの連分数展開における主近似分数およびその次の主近似分
数までの中間近似分数の分母の対であることが示される.
四角形 T0 := �(1, ζm, ζm+n, ζn)の 4頂点のうち 3頂点が同一直線上にあるとき, 四角形螺旋多

重タイリング T は三角形螺旋多重タイリングになる. 円筒 C/Z上のボロノイタイリングおよびボ
ロノイ螺旋多重タイリングでは, ボロノイ図が退化した特殊な場合として non-opposed parastichy
pairsをもつタイリングは得られないが, 三角形螺旋多重タイリングには, non-opposed parastichy
pairsをもつタイリングが存在する. 三角形螺旋多重タイリングについて, 以下が成り立つ.
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• 三角形タイルはすべて相似であるから, 三角形タイルの形状は２つの角度に依存する. 従
って, 三角形タイルの形状の自由度は実二次元である. I = (−π, π]とし, 三角形タイルの
２つの角度に関するパラメータ空間を ∆ := {(θ1, θ2) ∈ I2 : 0 < θ1 < θ2 + π < π},
∆′ := {(θ1, θ2) ∈ I2 : θ1, θ2 > 0, θ1 + θ2 < π} とする. v > 0 を整数とし, parastichy
pair{m,n}をもつ多重度 vの螺旋多重タイリングを作る三角形の形状の集合 `m,n,vとする. こ
のとき, 以下が成り立つ.

(i) Lv :=
∪

(m,n)∈R `m,n,v は∆ ∪ ∆′内において全疎である. 位相空間X の集合Aが全疎で
あるとは, Aの閉包の内部が空集合である.

(ii) L :=
∪

v>0 Lv は∆ ∪ ∆′内の稠密部分集合である.

• opposed parastichy pair{m,n}をもつ多重度 vの三角形螺旋多重タイリングを生成する ζ ∈
D\Rの集合 Pm,n,vは θ = Arg(ζ)をパラメータとする実代数曲線の枝である. さらに, 和集合∪

v>0

∪
(m,n)∈R Pm,n,v は単位円板 Dの稠密部分集合である.

• non-opposed parastichy pair{m,n}をもつ多重度 vの三角形螺旋多重タイリングを生成する
ζ ∈ D\Rの集合 Qm,n,v は絶対値 r = |ζ|をパラメータとする実代数曲線の枝であり, 和集合∪

(m,n)∈RQm,n,v は単位円板 Dの稠密部分集合である.

• θ/2πvを固定された二次無理数とし, r → 1とするとき, opposed parastichy pairsをもつ三角
形螺旋多重タイリングの三角形タイルの形状パラメータ (線分比)の近似式は θ/2πvの連分数
展開によって記述され, その極限集合は二次無理数で記述される有限集合であることが示され
る. 特に, θ/2πvが黄金比 τ に対等な無理数ならば形状パラメータの極限集合は黄金比 τ で記
述されることが示される.

第 5章では, 本論文のまとめおよび展望が述べられている.
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Chapter 1

Introduction

The main subjects of the thesis are Voronoi spiral tilings [63] and triangular spiral tilings [59,
60, 61, 62] which admit a transitive action by the similarity transformation group S = {ζj}j∈Z of
the punctured plane C∗ := C\{0}, which is generated by a single element ζ = reiθ ∈ D\R. The
topology of spiral tilings is intimately related to the phyllotaxis theory. First, we recall several
topics related to the subject of phyllotaxis. Second, we introduce phyllotactic architectures by
Akio Hizume. Finally, we explain an outline of the thesis.

1.1 Background

1.1.1 Several topics related to the subject of phyllotaxis

One of the most beautiful features of plants is the regular arrangements of botanical units such
as leaves and other organs, which are called phyllotaxis [35]. For example, phyllotactic patterns
are observed in leaves on a stem, scales on a pine cone, a skin of a pineapple and florets in the
head inflorescence of a daisy such as a sunflower.

In the subject of phyllotaxis, from the viewpoint of symmetry, the phyllotactic patterns are
classified four broad categories which are called the spiral phyllotaxis, the distichous phyllotaxis,
the whorled phyllotaxis and the multijugate phyllotaxis, respectively. In the spiral phyllotaxis,
botanical units grow one by one at each node of a stem, and an angle between two successive
botanical units is called the divergence angle. In the distichous phyllotaxis, botanical units grow
one by one at each node of a stem, which is preserving the divergence angle π radians. This is
a special case of the spiral phyllotaxis. In the whorled phyllotaxis, two or more botanical units
grow at each node on a stem. Botanical units in a node are uniformly spread around the stem
at a center between botanical units in the previous node. In the multijugate phyllotaxis, two
or more botanical units grow at each node on the stem, and botanical units in a whorl grow
uniformly around the stem. Moreover, each whorl preserves a constant divergence angle between
the previous whorl.

It is well observed that most of phyllotactic patterns are the spiral phyllotaxis. The spiral
phyllotaxis is classified as the planar phyllotaxis and the cylindrical phyllotaxis. As a remarkable
feature of the planar phyllotaxis and the cylindrical phyllotaxis, it is well observed that combi-
natorial structures (the divergence angle and the number of visible spirals) of typical plants are
described by the golden section τ = 1+

√
5

2 and the Fibonacci numbers 1, 2, 3, 5, 8, 13, · · · . For
example, the divergence angle of the spiral phyllotactic patterns of typical plants such as a sun-
flower is written by the golden section, and a pair of the number of two parastichies (clockwise
spirals or counterclockwise spirals) is a pair of two successive terms of the Fibonacci sequence.
It is often called the Fibonacci phyllotaxis. In addition to the Fibonacci phyllotaxis, there are
spiral phyllotactic patterns described by the Lucas numbers 1, 3, 4, 7, 11, 18, · · · . It is often called
the Lucas phyllotaxis, and its divergence angle is written by the irrational number 5+

√
5

10 , where
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5+
√

5
10 is an irrational number which is linearity equivalent of the golden section τ . According

to the investigation by Jean [35, pp.21], the Fibonacci phyllotaxis arises more than 92% and
the Lucas phyllotaxis arises about 2%. That is, the Lucas phyllotaxis is the minority compared
with the Fibonacci phyllotaxis. In addition to the both phyllotactic patterns, there are spiral
phyllotactic patterns described by the Fibonacci-like sequences such that 1, 4, 5, 9, 14, 23, · · · and
1, 5, 6, 11, 17, 28, · · · etc. These phyllotactic patterns are the minority compared with the Fi-
bonacci phyllotaxis. In the study of phyllotaxis, the following problem is the central problem.
What are physical, chemical or biological mechanisms that most of spiral phyllotactic patterns
are described by the golden section and the Fibonacci numbers ? In order to elucidate the above
central problem, phyllotactic patterns have studied as an interdisciplinary subject related to
mathematics, physics, chemical and biology, from the ancient times. See the historical review [1].

The mathematical study of phyllotaxis has continued from early half of the 19th century.
In 1837, Bravais brothers derived a cylindrical representation of phyllotaxis and studied the
relationship between the continued fraction approximations of the divergence angles and the
lattice structures. By subsequent studies [12, 35, 2] about the cylindrical model of phyllotaxis,
its mathematical formulation was rewritten by scientists Coxeter [10], Adler [2], Erickson [12,
Chapter 3], Jean [35]. In 1989, Rothen and Koch studied the shape invariance under compression
in the Voronoi tilings with the cylindrical lattices on the cylinder [49]. Recently, the bifurcation
processes of the combinatorial structures in the Voronoi tilings with the cylindrical lattices on the
cylinder was described from the viewpoint of dynamical systems [3]. In addition to the cylindrical
model, Vogel [72] proposed the simplest disk model for a phyllotactic pattern of a sunflower as the
sequence in 1979. Its sequence is given by the complex sequence V = {φj(r)ei·jθ}j∈N, φj(r) = r

√
j,

where r > 0 and θ ∈ R are constants. In the disk model, combinatorial structures in the Voronoi
tiling with the site set V are studied from the viewpoint of crystallography [45, 46, 47]. In addition
to the cylindrical model and the disk model, there are studies about the conical model [5] and
the curvature model [48]. In the geometrical approach, there is a tendency which deals with a
model suitable for the problem. Under any geometrical models, the continued fractions [22, 68]
and the lattice structures [9] play important roles.

On the other hand, there are studies about self-organized processes of phyllotactic patterns
from the viewpoint of mathematical biology. In the phyllotaxis theory, it was considered that
a botanical unit which is generated together with the growth of a plant grow while generating
a diffusible inhibitor. That is, it implies that each botanical unit is generated at a place with
the least influential of inhibitor which compared to the previous one. In 1970s, corresponding
two dimensional diffusion equations were proposed [70, 71, 74]. In 1996, Douady and Couder
[14, 15, 16] did an artificial experiment of the disk model of phyllotaxis and they showed the
bifurcation diagram of combinatorial structures. Recently, there are new proposals of the reaction
diffusion equation [52, 69].

Moreover, by the progress of the biological study of phyllotaxis, it is known that one of reason
which the divergence angle is the golden angle, is an auxin transportation [44, 7, 38] between cells
in a plant. Recently, several model equations (non-linearity partial differential equations) which
is considering an auxin fluctuation concentration, are proposed [53, 8, 40].

1.1.2 Phyllotactic architectures by Akio Hizume

In addition to studies of the classical subject of phyllotaxis, several phyllotactic architectures
were devised by Akio Hizume who is inspired by the golden section and the Fibonacci numbers.
In 1987, he devised an architecture which extracted a mathematical essence of the Fibonacci
phyllotaxis of a sunflower. It was named the sunflower tower [24], and he manufactured it as
a giant architecture by using bamboos (See Figure 1.1). In 2005, he devised triangular spiral
tilings named the Fibonacci tornado [25], as a foundation of the sunflower towers (See Figure
1.2 and Figure 4.4). The remarkable feature of the Fibonacci tornado is admitting no rotational
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(a) (b)

Figure 1.1: The sunflower tower manufactured by bamboos. There are two pictures in Hizume’s
web page (http://www.starcage.org). (a) Side view of the sunflower tower. (b) Bottom-up view
of the sunflower tower.

(a) (b)

Figure 1.2: The Fibonacci tornado designed as a tower. There are two pictures in Hizume’s web
page. (a) Side view of the top. (b) Top-down view.

symmetry and involving a transitive action by a similarity transformation written by the golden
angle. That is, in the Fibonacci tornado, any two triangles are not congruence. In the tiling
theory [20, 65, 21], tilings which admit an action by a similarity symmetry group are well-known.
However, there are not studies of triangular spiral tilings such as the Fibonacci tornado.

The Fibonacci tornado is a tiling of the plane R2 given by the following theorem, where a
tiling of the plane R2 conforms to the definition in the tiling theory (See Definition 2.1).

Theorem 1.1 ([25]). Let Aj := (rj cos 2πτj, rj sin 2πτj) ∈ R2 with 0 < r < 1, where τ = 1+
√

5
2

is the golden section. Let Fn := {fn}n≥1 be the Fibonacci sequence determined by f1 = 2, f2 = 3,
fn+2 = fn+1 + fn, n ≥ 1. Then, for each n ≥ 1, there exists 0 < r < 1 uniquely such that the
family of triangles T = {4(Aj ,Aj+fn ,Aj+fn+1)}j∈Z gives a tiling of R2.

In 2008, he succeeded to progress the theory of triangular spiral tilings by applying the
continued fraction theory, and they are named the real tornado [29]. In 2009, Akio Hizume and
Yoshikazu Yamagishi showed a mathematical description between triangular spiral tilings and
the continued fractions of the divergence angles [30, 31]. In these studies, it was observed that
there are triangular spiral tilings without the relation with the continued fraction expansions of
the divergence angles.

As an another background about the Fibonacci tornado, there is its origami development. Its
origin is an origami art by Fuse Tomoko, a Japanese origami artist. In 1994, she devised origami
towers named the twisted multiple towers [17, 18] based on her origami lampshades. Their top-
down views are spiral sequences of concentric regular polygons. Exactly, these patterns are tilings
by congruence polygons which are well-known in the tiling theory. Recently, these origami designs
are applied into a clothing by Issey Miyake and Jun Mitani 1 In addition to the twisted multiple

1Issey Miyake and Reality Lab Project Team, ‘132.5 ISSEY MIYAKE’, in: REALITY LAB: rebirth and regen-
eration, exhibition, (directors: Issey Miyake and Katsumi Asaba), 21 21 DESIGN SIGHT, Tokyo, 16 November to
26 December 2010.
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towers, there are also Chris Palmer’s flower towers [51]. In 2005, Akio Hizume was influenced
by the twisted multiple towers and he succeeded to make the Fibonacci tornado as an origami
development by one sheet of paper [26] (See Figure 4.5).

At almost the same time, Taketoshi Nojima devised an origami development with phyllotactic
patterns, called Nojima’s pine cone [54]. In his studies, there are origami developments manu-
factured by metals [41, 42]. In the study of the rigid origami [67] manufactured by metals etc,
Miura ori [39] applied solar panels of satellites and the Stanford bunny by Tomohiro Tachi [66] are
famous rigid origami architectures. It is the remarkable fact that these rigid origami architectures
are folded in one sheet of paper. There is a comprehensive text about origami foldability [43].
Recently, there are new proposals of origami developments and these engineering applications
[33, 34].

1.2 Outline of the thesis

The thesis consists of three parts. The aim of Part I is to give an extended results for the
shape invariance under compression by Rothen and Koch [49] in the helical Voronoi tilings on the
cylinder [64]. The aim of Part II and Part III is to construct theoretical frameworks about the
Voronoi spiral tilings [63] and the triangular spiral tilings [59, 60, 61, 62], which are not known
in the tiling theory.

1.2.1 Helical Voronoi tilings

Part I gives a mathematical description of the helical Voronoi tilings on the cylinder. In this part,
we consider the Voronoi tiling V(z) := {V (λ)}λ∈Λ(z),

V (λ) = V (λ; z) := {ζ ∈ C : |ζ − λ| ≤ |ζ − λ′|, ∀λ′ ∈ Λ(z)}.

of the plane C with the site set Λ(z) := zZ + Z, where z = x + iy ∈ C\R, x, y ∈ R. In the
phyllotaxis theory, x = Re(z) is called the divergence and ey = eIm(z) = |e−iz| is called the
plastochrone ratio. By the conical projection π : C → C/Z, the plane C is a covering space of the
cylinder C/Z. Thus, the family T (z) := {T (λ)}λ∈Λ(z),

T (λ) := {ζ ∈ C/Z : dist(ζ, π(λ)) ≤ dist(ζ, π(λ′)), ∀λ′ ∈ Λ(z)}, λ ∈ Λ(z).

of the cylinder C/Z admits a transitive action by an additive group of translations π(zZ + Z) =
π(z)Z generated by a single element π(z).

Two distinct tiles T1, T2 ∈ T (z) are adjacent if T1 ∩ T2 contains at least two points. Let
E = {z ∈ C : |z − 1

2 | ≤
1
2}. If z 6∈ Z + E, then the two tiles V (0), V (1) ∈ V(z) are adjacent to

each other, and hence the Voronoi region T (0) = T (1) in the cylinder is not simply connected. If
z ∈ Z +E \R, then T (λ), λ ∈ Λ(z), are simply connected, and T (z) is a tiling of the cylinder by
convex polygons. It is called the helical Voronoi tiling generated by z.

In Section 2.1, it is shown in Lemma 2.4 that tiles of helical Voronoi tilings T (z) are hexagons
or rectangles.

In the phyllotaxis theory, the pair {m,n} of positive integers is called an opposed parastichy
pair if V (0) is adjacent to V (mz − a), V (nz − b), and Re(nz − b) · Re(mz − a) < 0, for some
a, b ∈ Z. It is shown in Lemma 2.4 that helical Voronoi tilings T (z) have opposed parastichy
pairs.

If a helical Voronoi tiling becomes a rectangular tiling with an opposed parastichy pair {m,n},
then the four points 0, λ, λ + λ′ and λ′ lie on a same circle in this order of vertices, where
λ = mz − a, λ′ = nz − b. In Section 2.2, we describe the set (Figure 2.1) of generators z which
produce rectangular tilings for each opposed parastichy pair {m,n}. it is shown in Lemma 2.5
that there are generators z which produce hexagonal tilings for every opposed parastichy pairs,
by its bifurcation diagram.
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In Section 2.3, we show a relationship between the continued fraction expansions of the di-
vergence and opposed parastichy pairs of the helical Voronoi tilings.

In Section 2.4, we consider the shape convergence property of the rectangular helical Voronoi
tilings. We address the following question:

• What are limit shapes of rectangular tiles ?

We consider the limit set of shape parameters (aspect ratios) of rectangular tiles as y tends to
0, when x is a fixed irrational number. If x is a fixed quadratic irrational, then it is shown in
Theorem 2.9 that the limit set of shape parameters of rectangular tiles is a finite set written by
quadratic irrationals. Moreover, if x is a fixed irrational number which is a linearity equivalent
of the golden section τ , it is shown in Corollary 2.10 that the limit shape of the rectangular tiles
is the square. It gives the extended result of the shape invariance under compression written in
[49].

1.2.2 Voronoi spiral tilings

Part II gives mathematical description about the Voronoi spiral tilings. The Voronoi spiral tiling
is a Voronoi tiling T (ζ) = {Tj}j∈Z of C∗ with the spiral site set S = {ζj}j∈Z generated by a single
element ζ = reiθ ∈ D\R, 0 < r < 1. First, we address the following essential question:

• What is a Voronoi spiral multiple tiling geometrically possible ?

In Section 3.1, we consider a Voronoi tiling T (ζ) with the spiral site set S on an open Riemann
surface Mv such that the exponential function is an isomorphism of the additive group Cv :=
C/2πviZ onto the multiplicative group Mv, where v 6= 0 is an integer. It is shown that a Voronoi
tiling of the open Riemann surface Mv is a polygonal tiling. We call these polygonal tilings the
Voronoi spiral multiple tilings. Moreover, it is shown in Lemma 3.3 that tiles Tj of Voronoi spiral
multiple tilings are hexagons or quadrilaterals. In particular, the case of quadrilateral tilings is
a special case which is called the degenerate case in the subject of the Voronoi diagram [6, 56].
In the phyllotaxis theory, the pair {m,n} of a Voronoi spiral multiple tiling is called an opposed
parastichy pair if T0 is adjacent to Tm, Tn and arg(ζm) arg(ζn) < 0, and a non-opposed parastichy
pair if T0 is adjacent to Tm, Tn and arg(ζm) arg(ζn) > 0, where arg(ζ) ∈ (−|πv|, |πv|] be an
argument of ζ ∈ Mv. It is the remarkable feature that the Voronoi spiral multiple tilings by
quadrilaterals have opposed parastichy pairs, whereas there exists a triangular spiral multiple
tiling with a non-opposed parastichy pair.

In Section 3.2, we show that transitions of opposed parastichy pairs of the Voronoi spiral
multiple tilings are described by the continued fraction approximations of θ/2πv when θ/2πv is
fixed and 1/r is decreased monotonically from a sufficiently large value to a sufficiently small
value.

By Section 3.1 and 3.2, there are not generators ζ ∈ D\R which produce Voronoi spiral
multiple tilings by quadrilaterals with non-opposed parastichy pairs, and an opposed parastichy
pair of a quadrilateral tiling is a pair of denominators of principal or intermediate convegents of
θ/2πv, at least one of which is principal.

If a Voronoi spiral multiple tiling of multiplicity v becomes a degenerate quadrilateral tiling
with an opposed parastichy pair {m,n}, then the four points 1, ζm, ζm+n and ζn lie on a same
circle in U ⊂ Mv. In this section, we address the following question about the quadrilateral
Voronoi spiral multiple tilings:

• Which generators ζ ∈Mv produce quadrilateral Voronoi spiral multiple tilings ?

In Section 3.3, we consider the set Bm,n,v of generators ζ ∈ Mv which produce quadrilateral
Voronoi spiral multiple tilings of multiplicity v, with an opposed parastichy pair {m,n}. It
is shown in Theorem 3.12 and Lemma 3.13 that Bm,n,v is a branch of a real algebraic curve
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which is parameterized by the divergence angle θ = arg(ζ), in D. Next, we consider the union
Bv :=

∪
(m,n)∈RBm,n,v for each v, where R = {(m,n) ∈ Z2 : m > n > 0 are relatively prime}.

Figure 3.5 shows the set B1 ∪B−1. This set is not a dense subset of D. Moreover, it is shown in
Theorem 3.15 that the union of B :=

∪
v 6=0

∪
(m,n)∈RBm,n,v gives a dense subset of D.

In Section 3.4, we consider the shape convergence property of the quadrilateral Voronoi spiral
multiple tilings. We address the following question:

• What are limit shapes of quadrilateral tiles ?

We consider the limit set of shape parameters of quadrilateral tiles for quadrilateral Voronoi
spiral multiple tilings as 1/r → 1, when θ/2πv is a fixed irrational number. If θ/2πv is a fixed
quadratic irrational, then it is shown in Theorem 3.18 that the limit set of shape parameters of
quadrilateral tiles is a finite set written by quadratic irrationals. Moreover, if θ/2πv is a fixed
irrational number which is a linearity equivalent of the golden section τ , it is shown in Corollary
3.19 that the limit shape of the quadrilateral tiles is the square.

1.2.3 Triangular spiral tilings

Part III gives a mathematical description of the triangular spiral tilings. First, we address the
following essential question:

• What is a quadrilateral spiral multiple tiling geometrically possible ?

In Section 4.1, first, we define a spiral multiple tiling as a tiling of a covering space of the
punctured plane C∗. Second, we consider the spiral sequence S = {ζj}j∈Z of C∗ generated by a
single element ζ = reiθ ∈ D\R with 0 < r < 1, and we show that a quadrilateral spiral multiple
tiling is determined by a triplet (ζ,m, n), where m,n > 0 are relatively prime integers. If
T0 := �(1, ζm, ζm+n, ζn) is a quadrilateral of C∗ in this order of vertices, it is shown in Theorem
4.2 that the family of quadrilaterals T = {Tj := �(ζj , ζj+m, ζj+m+n, ζj+n)}j∈Z gives a spiral
multiple tiling of C∗, with multiplicity v := |nArg(ζm)−mArg(ζn)|/2π, where −π < Arg(z) ≤ π
denotes the principal argument of z 6= 0.

In the phyllotaxis theory, the pair {m,n} of a quadrilateral spiral multiple tiling T is called an
opposed parastichy pair if Arg(ζm)Arg(ζn) < 0, and a non-opposed parastichy pair if Arg(ζm)Arg(ζn) >
0. In Section 4.2, we show that it has a natural extension to spiral multiple tilings. If {m,n} is
an opposed parastichy pair of a quadrilateral spiral multiple tiling of multiplicity v, it is shown
in Theorem 4.3 that m,n are denominators of principal or intermediate convergents of θ/2πv, at
least one of which is principal.

If three vertices of the quadrilateral T0 lie on a same line, then T0 becomes a triangle, that is, a
triangular spiral multiple tiling is a special case of quadrilateral spiral multiple tilings. In Section
4.3, we consider triangular spiral multiple tilings with opposed parastichy pairs or non-opposed
parastichy pairs. In this section, we address the following questions about the triangular spiral
multiple tilings:

• What triangles admit spiral multiple tilings ?

• Which generators ζ ∈ D\R produce triangular spiral multiple tilings ?

About the first question, it is shown in Theorem 4.7 and Theorem 4.21 that, for each mul-
tiplicity v > 0, the set of shapes of triangles which admit spiral multiple tiling with opposed
parastichy pairs or non-opposed parastichy pairs, is a nowhere dense subset of the parameter
space ∆+. Moreover, it is shown in Theorem 4.7 and Theorem 4.22 that the union of these sets
for all multiplicity v gives a dense subset of the parameter space ∆+. By Theorem 4.5 and The-
orem 4.13, we can consider whether a fixed triangle admits a spiral multiple tiling. For example,
we could obtain spiral tilings by equilateral triangles, right triangles with the angles 30◦, 60◦, 90◦
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or right triangles with the angles 45◦, 45◦, 90◦ (See Figure 4.7, 4.17 and 4.18). About multiple
tilings, we could obtain a spiral multiple tiling of multiplicity v = 2 by right triangles with the
angles 30◦, 60◦, 90◦ (See Figure 4.9). Moreover, we present origami sheets of Figure 4.7 and 4.9.

About the second question, we show the followings. It is shown that the set Pm,n,v of gener-
ators ζ ∈ D\R which produce triangular spiral multiple tilings of multiplicity v with an opposed
parastichy pair {m,n} is a branch of a real algebraic curve which are parameterized by the di-
vergence angle θ = Arg(ζ). Next, we consider the union Pv :=

∪
(m,n)∈R Pm,n,v for each v. Figure

4.13 shows the set P1 ∪ P−1. This set is not a dense subset of D. However, it has an interesting
resemblance to a diagram in the topology of knot complements [23, Fig.4] which has PSL(2; Z)
symmetry. It is shown in Theorem 4.12 that the union P :=

∪
v 6=0 Pv is a dense subset of D.

On the other hand, it is shown in Theorem 4.15 that the set Qm,n,v of generators ζ ∈ D\R
which produce triangular spiral multiple tilings of multiplicity v with non-opposed parastichy
pair {m,n} is a branch of a real algebraic curve which are parameterized by the plastochrone
ratio r = |ζ|. For each v, it is shown in Theorem 4.20 that the union Qv :=

∪
(m,n)∈RQm,n,v is a

dense subset of D.
In Section 4.4, we consider the shape convergence property of the triangular spiral multiple

tilings with opposed parastichy pairs. We address the following question:

• What are limit shapes of triangle tiles ?

It is shown in Theorem 4.26 that if the divergence angle θ is written by a fixed quadratic irrational,
then the limit set of shape parameters (ratios of line segments) of triangle tiles is a finite set. In
particular, when the divergence angle is written as an irrational number of the golden section τ ,
it is shown in Corollary 4.27 that the limit set of the shape parameters of the triangle tiles is
written by the golden section τ .

Finally, we give conclusion remarks in Chapter 5.
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Helical Voronoi tilings on the
cylinder
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Chapter 2

Helical Voronoi tilings on the
cylinder

2.1 Voronoi tilings for cylindrical lattices

In the thesis, we deal with a tiling of a two dimensional manifold defined as follows, where the
following definition is based on the tiling theory [21].

Definition 2.1. A tiling of a two dimensional manifold X is a family T = {Tj}j of topological
disks Tj ⊂ X which covers X without gaps or overlaps, that is, X =

∪
j Tj and int(Tj)∩ int(Tk) =

∅, j 6= k. Each Tj is called a tile.

Let z = x+ iy ∈ H, where H = {z ∈ C : Im(z) > 0}. In the phyllotaxis theory, x = Re(z) is
called the divergence and ey = eIm(z) = |e−iz| is called the plastochrone ratio. Next, we consider
a Voronoi tiling of the complex plane C with the site set Λ(z) := zZ + Z, which is defined as
follows. The following definition is based on the subject of Voronoi diagram [6, 56].

Definition 2.2. The Voronoi region of the site λ ∈ Λ(z) is defined by

V (λ) = V (λ; z) := {ζ ∈ C : |ζ − λ| ≤ |ζ − λ′|, ∀λ′ ∈ Λ(z)}. (2.1.1)

The family V(z) := {V (λ)}λ∈Λ(z) is called the Voronoi tiling or the Voronoi diagram, with the
site set Λ(z).

It is easy to see that the Voronoi region V (λ), λ ∈ Λ(z) is a bounded polygon of C. The
Voronoi tiling V(z) is a periodic tiling with respect to the additive group of translations Λ(z),
since V (λ) = V (0)+λ for each λ ∈ Λ(z). Moreover, we have V(z) = V(−z) = V(z+1) = z ·V(z−1)
because zZ + Z = (−z)Z + Z = (z + 1)Z = z(z−1Z + Z).

By the canonical projection π : C → C/Z, C is a covering space of the cylinder C/Z. The
Euclidean metric of C induces a canonical distance in C/Z. The Voronoi regions in C/Z with
respect to the site set π(Λ(z)) are given by

T (λ) := {ζ ∈ C/Z : dist(ζ, π(λ)) ≤ dist(ζ, π(λ′)), ∀λ′ ∈ Λ(z)}, λ ∈ Λ(z).

Note that T (λ) = π(V (λ)). The family T (z) := {T (λ)}λ∈Λ(z) admits a transitive action of an
additive group of translations π(zZ + Z) = π(z) Z, generated by a single element π(z).

Two distinct tiles T1, T2 are adjacent if T1 ∩ T2 contains at least two points. Let E = {z ∈
C : |z − 1

2 | ≤
1
2}. If z 6∈ Z + E, then the two tiles V (0), V (1) ∈ V(z) are adjacent to each

other, and hence the Voronoi region T (0) = T (1) in the cylinder is not simply connected. If
z ∈ Z +E \R, then T (λ), λ ∈ Λ(z), are simply connected, and T (z) is a tiling of the cylinder by
convex polygons. It is called the helical Voronoi tiling generated by z.
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Suppose that z ∈ Z + E ∩ H, and fix a lattice Λ(z). A dual of a Voronoi diagram is called a
Delaunay diagram. The line segment `(λ, λ′) joining λ, λ′ ∈ Λ(z) is called a Delaunay edge if V (λ)
is adjacent to V (λ′). Two distinct Delaunay edges may have a point in common only at their
endpoint. A connected component of the complement C \

∪
`(λ, λ′), where `(λ, λ′) runs through

all the Delaunay edges, is called a Delaunay polygon. Each Delaunay polygon is inscribed in a
circle. That is, a finite subset Λ′(z) ⊂ Λ(z) is the set of the corners of a Delaunay polygon if and
only if there exists a disk D such that ∂D ∩ Λ(z) = Λ′(z) and int(D) ∩ Λ(z) = ∅.

For distinct z1, z2, z3 ∈ C, let 4(z1, z2, z3) be a triangle in this order of vertices and

∠(z1, z2, z3) = Arg
(
z1 − z2
z3 − z2

)
,

where −π < Arg(z) ≤ π denotes the principal argument of z 6= 0. If 4(z1, z2, z3) is a triangle
in this order of vertices with counterclockwise, then interior angles of 4(z1, z2, z3) are given by
∠(z3, z1, z2), ∠(z1, z2, z3) and ∠(z2, z3, z1), and they are all positive.

Lemma 2.3. Let z ∈ Z + E ∩ H. Let m,n > 0 be integers, and suppose that �(0, λ, λ + λ′, λ′)
is a quadrilateral in C in this order of vertices, where λ = mz − a, λ′ = nz − b ∈ Λ(z) for some
a, b ∈ Z. Suppose that Re(λ) · Re(λ′) > 0 and

∠(λ′, 0, λ), ∠(λ′, λ+ λ′, λ) > 0.

Then we have ∠(λ′, 0, λ) + ∠(λ′, λ+ λ′, λ) < π.

Proof. By the assumption, ∠(λ′, 0, λ) < π/2. Moreover, we have ∠(λ′, 0, λ) = ∠(λ′, λ + λ′, λ).
Hence, the proof is clear.

Lemma 2.4. Let z ∈ Z + E ∩ H. For the tiling V(z) of the plane C, there are λ = mz − a, λ′ =
nz − b ∈ Λ(z) with integers m,n > 0, such that the followings hold.

(i) The tile V (0) is adjacent to V (λ) and V (λ′),

(ii) λ, λ′, λ′/λ ∈ H, mb− na = 1, Re(λ′) < 0 < Re(λ), and

(iii) Either

(a) V(z) is a rectangular tiling, or
(b) V(z) is a hexagonal tiling such that V (0) is adjacent to V (λ+ λ′).

Proof. Since the site set Λ(z) is a lattice of C, its Delaunay diagram is also a periodic tiling with
respect to the translation group Λ(z). Since V (λ), λ ∈ Λ(z) is a bounded polygon, there exists
λ 6= λ′ such that the tile V (0) is adjacent to V (λ) and V (λ′).

Suppose that V (0) is adjacent to V (λ), V (λ′), λ 6= λ′. Then we have either:

1. the quadrilateral �(0, λ, λ+ λ′, λ′) is a Delaunay polygon, or

2. `(0, λ+ λ′) or `(λ, λ′) is a Delaunay edge.

In the case 1, the quadrilateral �(0, λ, λ + λ′, λ′) is a parallelogram which is inscribed in a
circle. Hence it is a rectangle. By Lemma 2.3, Re(λ′) · Re(λ) < 0. Denote by λ = mz − a,
λ′ = nz − b. We may assume that m,n > 0 without loss of generality, which implies that
λ, λ′ ∈ H. Since Λ(z) = λZ+λ′Z, we have |mb−na| = 1. We may further assume that λ′/λ ∈ H,
Re(λ′) < 0 < Re(λ) and mb− na = 1.

In the case 2, we may assume without generality that λ, λ′, λ′/λ ∈ H, and that V (0) is adjacent
to V (λ), V (λ′), V (λ + λ′). Denote by λ = mz − a, λ′ = nz − b. Then we have m,n > 0, and
mb− na = 1 since Λ(z) = λZ + λ′Z. Since 4(0, λ, λ+ λ′) is a Delaunay polygon, λ′ lies outside
the circumscribing circle of 4(0, λ, λ + λ′), whereas �(0, λ, λ + λ′, λ′) is a parallelogram. This
implies that ∠(λ′, 0, λ) > π/2, and hence Re(λ′) < 0 < Re(λ).

In the phyllotaxis theory, the pair m,n > 0 is called an opposed parastichy pair if V (0) is
adjacent to V (mz − a), V (nz − b), and Re(nz − b) · Re(mz − a) < 0, for some a, b ∈ Z.
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2.2 Parastichy transitions of helical Voronoi tilings

In this section, we rewrite that the bifurcation structure [12, Chapter 3] of the helical Voronoi
tilings. First, we describe the set of generators z ∈ Z + E ∩ H which produce rectangular helical
Voronoi tilings.

Let z ∈ Z +E ∩ H, and suppose that V(z) is a rectangular tiling of C such that the tile V (0)
is adjacent to V (λ), V (λ′), where λ = mz − a, λ′ = nz − b, m,n > 0, mb − na = 1. Then the
angle ∠(λ′, 0, λ) is a right angle, and z lies on the circle

C

(
a

m
,
b

n

)
=
{
z ∈ C :

nz − b

mz − a
∈ iR

}
. (2.2.1)

The circle C( a
m ,

b
n) is symmetric with respect to the real axis, and passes through the points

a/m, b/n ∈ R. This, together with the assumption that mb − na > 0, implies that a/m <
Re(z) < b/n.

Lemma 2.5. Let z ∈ Z +E ∩ H. Suppose that V(z) is a hexagonal tiling such that the tile V (0)
is adjacent to V (λ), V (λ′), V (λ + λ′), where λ = mz − a, λ′ = nz − b, m,n > 0, mb − na = 1.
Then z lies inside the circle (2.2.1). In particular, we have a/m < Re(z) < b/n.

Proof. Let z = x + iy, y > 0. Fix x, and consider λ = λ(z) = mz − a, λ′ = λ(z) = nz − b as
functions of y. Since λ(z), λ′(z) ∈ H and Re(λ′(z)) < 0 < Re(λ(z)), the angle ∠(λ′, 0, λ) is a
decreasing function of y > 0. Since `(0, λ + λ′) is a Delaunay edge, we have ∠(λ′, 0, λ) > π/2.
This implies that z lies inside the circle (2.2.1).

Now suppose that |Re(z)| < 1
2 for simplicity. For each pair of relatively prime integersm,n > 0

with (m,n) 6= (1, 1), there exist a, b ∈ Z such that mb−na = 1 and −1
2 <

a
m < b

n <
1
2 . Denote by

λ = λ(z) := mz−a, λ′ = λ′(z) := nz−b. Lemma 2.5 implies that for z ∈ E with |Re(z)| < 1
2 , V(z)

is a hexagonal tiling such that V (0) is adjacent to V (λ), V (λ′), V (λ+ λ′) and λ, λ′, λ+ λ′ ∈ H,
if and only if z lies inside the circle C( a

m ,
b
n) and outside C( a

m ,
a+b
m+n) and C( a+b

m+n ,
b
n), that is,

z ∈ Hm,n where

Hm,n :=
{
z ∈ H : |Re(z)| < 1

2
,
λ′

λ
∈ iH,

λ+ λ′

λ
,

λ′

λ+ λ′
∈ −iH

}
.

Figure 2.1 is the set of z ∈ H ∩ {|Re(z)| < 1
2} that generate rectangular tilings of C (and

C/Z). In the figure, (m,n) denotes the half-circle C( a
m ,

b
n) ∩ H, where a, b are integers such that

mb− na = 1 and −1
2 <

a
m < b

n <
1
2 .

Figure 2.2 shows the parastichy transition of helical Voronoi tilings with the fixed divergence
angle θ = 2πτ , τ = 1+

√
5

2 , from a hexagonal tiling with opposed parastichy pairs {3, 5}, {5, 8},
through a rectangular tiling with an opposed parastichy pair {5, 8}, to a hexagonal tiling with
opposed parastichy pairs {5, 8}, {8, 13}.

2.3 Parastichies and continued fraction expansions

In this section, we recall the continued fractions [22] and we show that opposed parastichy pairs
of helical Voronoi tilings are drived by the continued fraction approximations of the divergence
x = Re(z).

For x ∈ R, let

x = a0 +
1

a1 +
1

a2 + · · ·

= [a0, a1, a2, · · · ], a0 ∈ Z, ai ∈ Z+, i ≥ 1
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Figure 2.1: The set of generators z ∈ H of rectangular tilings, consisting of half circles. For each
pair of relatively prime integers m,n > 0, there exist a, b ∈ Z such that 0 < a/m < b/n < 1
and mb − na = 1. The half circle with the endpoints a/m, b/n, denoted by (m,n), is the set of
generators z ∈ H, |Re(z)| < 1

2 , of rectangular tilings with an opposed parastichy pair {m,n}.

(a) -8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

9

4

(b)
17

-15
-14

-13
-12

-11
-10

-9
-8

-7
-6

-5
-4

-3
-2

-1
0

1 2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

17

(c) 25
-23

-22
-21

-20
-19

-18
-16

-15
-14-13

-12
-11-10

-9
-8-7

-6
-5

-4
-3

-2
-1

0

1 23
4

5
6

7
8

9
10

11
12

13
14

15
1617

18
19 20

21
22

23
24 25

-17

(d) -42-41 -40-39-38 -37-36 -35-34-33 -32-31 -30-29-28 -27-26-25 -24-23 -22-21-20 -19-18
-16-15 -14-13-12 -11-10 -9-8-7 -6-5-4 -3-2 -1

01
23 456 789 1011 121314 151617 1819 202122 2324 252627 282930 3132 333435 3637 383940 414243 4445 4647

4

3

Figure 2.2: Helical Voronoi tilings generated by z = (τ − 2) + iy, where τ = 1+
√

5
2 is the golden

section. The Fibonacci parastichy numbers are decreasing functions of y > 0. (a) y = 0.056,
hexagonal tiling with opposed parastichy pairs {2, 3}, {5, 3}. (b) y = 0.0296149 · · · , rectangular
tiling with an opposed parastichy pair {5, 3}. (c) y = 0.02, hexagonal tiling with opposed paras-
tichy pairs {5, 3}, {5, 8}. (d) y = 0.0112083 · · · , rectangular tiling with an opposed parastichy
pair {5, 8}.
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be a continued fraction expansion of x, where Z+ denotes the set of positive integers. Define
the following sequences. {pj}j≥−1, p−1 = 1, p0 = a0, p1 = a0a1 + 1, pj = pj−2 + ajpj−1, j ≥ 2;
{qj}j≥−1, q−1 = 0, q0 = 1, q1 = a1, qj = qj−2 + ajqj−1, j ≥ 2. Then

pj

qj
= a0 +

1
a1 + 1

a2+ 1

...+ 1
aj

= [a0, a1, a2, · · · , aj ], j ≥ 0

is called a principal convergent of x. Let pj,k = pj−1 + kpj and qj,k = qj−1 + kqj , j ≥ 0,
0 ≤ k ≤ aj+1. Then

pj,k

qj,k
= a0 +

1
a1 + 1

a2+ 1

...+ 1

aj+ 1
k

= [a0, a1, a2, · · · , aj , k], j ≥ 0, 0 < k < aj+1

is called an intermediate converegent of x. If x ∈ Q, there are only finitely many convergents of
x. Note that pj,0 = pj−1, qj,0 = qj−1, pj,aj+1 = pj+1, qj,aj+1 = qj+1.

Lemma 2.6. Let x ∈ R\Q. Suppose that a/m, b/n be irreducible fractions such that a/m < x <
b/n, mb− na = 1. Then a/m, b/n are principal or intermediate convergents of x, at least one of
which is principal.

Proof. This is a well-known result of the theory of numbers. For example, see Theorem 2.5,
Theorem 2.6, the first part of Theorem 2.8 and Problem 2 (pp.153) in [68].

In the elementary numbers theory, a pair of rational numbers a/m, b/n is called a pair of
convergents of x ∈ R if |bm− an| = 1 and either a/m < x < b/n or b/n < x < a/m. It is known
that if a/m, b/n is a pair of convergents of x, then either a = pj , m = qj , b = pj,k, m = qj,k with
j even, or a = pj,k, m = qj,k, b = pj , n = qj with j odd, and 0 < k ≤ aj+1.

Lemma 2.7. Let z = x + iy ∈ Z + E ∩ H, and suppose that V(z) is a hexagonal tiling such
that V (0) is adjacent to V (λ), V (λ′), V (λ + λ′), where λ = mz − a, λ′ = nz − b, m,n > 0 and
mb−na = 1. Then a/m, b/n are principal or intermediate convergents of x, at least one of which
is principal.

Proof. We have mb− na = 1, and a/m < x < b/n by Lemma 2.5. Hence, a/m, b/n are a pair of
convergents of x.

2.4 Shape limit of rectangular helical Voronoi tilings

Fix an irrational number x such that |x| < 1
2 , and define the sequences aj , qj and qj,k, j ≥ 0,

0 < k ≤ aj+1, in Section 2.3. For each j ≥ 0 and 0 < k ≤ aj+1, let aj,k/mj,k < bj,k/nj,k be a
pair of convergents of x such that {mj,k, nj,k} = {qj , qj,k}. Denote by Cj,k(x) = C( aj,k

mj,k
,

bj,k

nj,k
).

There exists a unique yj,k > 0 such that zj,k := x + iyj,k ∈ Cj,k(x). Let λj,k = mj,kzj,k − aj,k,
λ′j,k = nj,kzj,k − bj,k. The ratio

Rj,k(x) =
λ′j,k
λj,k

∈ iR

is called a shape parameter of the tiling V(zj,k). It is defined as the aspect ratio, or the modulus,
of the Delaunay polygon �(0, λj,k, λj,k + λ′j,k, λ

′
j,k), which is the same as that of the rectangular

tile T (0) in T (zj,k).
Denote by 〈ξ〉 ∈ (−1/2, 1/2] a fractional part of ξ ∈ R, such that [[ξ]] := ξ − 〈ξ〉 is an integer

which is the nearest to ξ. We have 〈xmj,k〉 = xmj,k − aj,k = Re(λj,k), 〈xnj,k〉 = xnj,k − bj,k =
Re(λ′j,k).
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Lemma 2.8. Rj,k(x) = i
(
−
qj,k〈xqj,k〉
qj〈xqj〉

)(−1)j/2

Proof. Since λ′/λ ∈ iR, we have

|λj,k|2 · Re(
λ′

λ
) = (mj,kx− aj,k)(nj,kx− bj,k) +mj,knj,ky

2
j,k = 0.

So we have

yj,k =
(
−

(mj,kx− aj,k)(nj,kx− bj,k)
mj,knj,k

)1/2

,

|λj,k|2 = (mj,kx− aj,k)2 +m2
j,ky

2
j,k =

mj,kx− aj,k

nj,k
,

and hence

Im(
λ′j,k
λj,k

) =
y2

j,k

|λj,k|2
=
(
−
nj,k(nj,kx− bj,k)
mj,k(mj,kx− aj,k)

)1/2

.

Suppose that x is a quadratic irrational. Then it has a periodic continued fraction expansion

x = [a0, a1, a2, . . . ]

= [a0, a1, . . . , aj0 , b1, · · · , bd]
= [a0, a1, . . . , aj0 , b1, . . . , bd, b1, · · · , bd, . . . ].

We may assume that j0, d are even, by choosing bigger ones if necessary. For each 1 ≤ s ≤ d, let
ωs = [bs, . . . , bd, b1, . . . , bs−1] be a purely periodic continued fraction, and hs(x) = x2−αsx−βs ∈
Q[x] a quadratic polynomial such that hs(ωs) = 0. Recall that the conjugate of ωs is written as
ω′

s := −1/[bs−1, . . . , b1, bd, . . . , bs], that is, we have hs(ω′
s) = 0, see [19].

Let Ω(x) := Ω({Rj,k(x)}j,k) be the limit set, i.e., the set of the accumulation points, of
{Rj,k(x)}j,k.

Theorem 2.9. If x is a quadratic irrational, the limit set Ω(x) is written as

Ω(x) =
{
−ihs+1(k)(−1)s/2 : 1 ≤ s ≤ d, 1 ≤ k ≤ bs

}
.

In particular, it is a finite set.

Proof. By using the continued fractions, we have

qj,k
qj

= [k, aj , aj−1, . . . , a1], −
〈xqj,k〉
〈xqj〉

= [aj+1 − k, aj+2, aj+3, . . . ] (2.4.1)

for j ≥ 0, 0 < k ≤ aj+1. As j → +∞, they tend to the periodic sequence of continued fractions

[k, bs, . . . , b1, bd, . . . , bs+1] and [bs+1 − k, bs+2, . . . , bd, b1, . . . , bs+1].

However, we have

[k, bs, . . . , b1, bd, . . . , bs+1] · [bs+1 − k, bs+2, . . . , bd, b1, . . . , bs+1]
= (k − ω′

s+1)(−k + ωs+1)
= −hs+1(k)

for 0 ≤ s < d, 0 < k ≤ bs+1. This completes the proof.

26



In the number theory of phyllotaxis [10], it is known that the most common divergences x are
the quadratic irrationals such that aj = 1 for sufficiently large j.

Corollary 2.10. Let x be a quadratic irrational such that aj = 1 for sufficiently large j. Then
Ω(x) = {i}.

Proof. The golden section has the purely periodic continued fraction expansion τ = [1, 1, . . . ] =
[1, 1, 1], and it is a root of a quadratic polynomial h(x) = x2 − x− 1. Thus we have −h(1) = 1,
and hence Ω(x) = {i}.

In Figure 2.2 (b) and (d), the shape of the rectangle tiles is not the square because R3,1(2−τ) =
(0.9853 · · · )i and R4,1(2−τ) = (0.9944 · · · )i. The ratio Rj,1(2−τ) is close to i for sufficiently large
j. That is, this implies that the shape of the rectangle tiles with a fixed divergence x = τ − 2, as
y → 0, tend to the square.

Figure 2.3 shows helical Voronoi tilings generated by z = (5+
√

5
10 )+iy. The parastichy numbers

are the Lucas numbers 1, 3, 4, 7, 11, 18, · · · , and these are decreasing functions of y > 0. Since
5+

√
5

10 is a quadratic irrational which is a linearity equivalent of the golden section, the limit set
is Ω(5+

√
5

10 ) = {i}, that is, the limit shape of rectangle tiles is the square.
Figure 2.4 shows helical Voronoi tilings generated by z = (

√
2 + 1) + iy.

√
2 + 1 is called the

silver mean, and its continued faction expansion is given by
√

2 + 1 = [2, 2, 2, · · · ]. The silver
parastichy numbers 1, 2, 5, 7, 12, 19, · · · are decreasing function of y > 0. The limit set is given
by Ω(

√
2 + 1) = {i, i

√
2, i/

√
2}. That is, the limit shapes of the rectangle tiles are the square and

the rectangle with the aspect ratio 1 :
√

2.
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Figure 2.3: Helical Voronoi tilings generated by z = (5+
√

5
10 ) + iy, (a) y = 0.056, hexagonal tiling

with opposed parastichy pairs {1, 3}, {4, 3}. (b) y = 0.0387664 · · · , rectangular tiling with an
opposed parastichy pair {4, 3}. (c) y = 0.02, hexagonal tiling with opposed parastichy pairs
{4, 7}, {4, 3}. (d) y = 0.0156848 · · · , rectangular tiling with an opposed parastichy pair {4, 7}.
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Figure 2.4: Helical Voronoi tilings generated by z = (
√

2 + 1) + iy, (a) y = 0.056, hexagonal
tiling with opposed parastichy pairs {2, 3}, {2, 5}. (b) y = 0.0349189 · · · , rectangular tiling with
an opposed parastichy pair {2, 5}. (c) y = 0.02, hexagonal tiling with opposed parastichy pairs
{2, 5}, {7, 5}. (d) y = 0.0142855 · · · , rectangular tiling with an opposed parastichy pair {7, 5}.
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Chapter 3

Voronoi spiral tilings

3.1 Voronoi multiple tilings for spiral lattices

In this section, we consider a Voronoi multiple tiling as a tiling of a covering space of the punctured
plane C∗ = C\{0}.

Let Cv := C/2πviZ be a cylinder, where v 6= 0 is an integer. By the exponential function
exp : Cv → C∗ which maps w+2πviZ to z = ew, Cv is a covering space of degree |v| of C∗. Let Mv

be a covering space of C∗ of degree |v| such that the exponential function is an isomorphism of the
additive group Cv onto the multiplicative group Mv. By the canonical projection p : Mv → C∗,
the Euclidean metric on C∗ is induced into Mv, so that p is a local isometry. Thus Mv is a metric
space with the distance function

dist(ζ0, ζ1) = inf{
∫ 1

0
|φ′(t)| dt : φ : [0, 1] →Mv, φ(0) = ζ0, φ(1) = ζ1},

ζ0, ζ1 ∈ Mv. For ζ ∈ Mv, denote by ‖ζ‖ := |p(ζ)|. Let arg(ζ) ∈ (−|πv|, |πv|] be an argument of
ζ ∈Mv. A tiling of Mv is called a multiple tiling of multiplicity |v|.

Let U := {ζ ∈ Mv : −π < arg(ζ) < π} ⊂ Mv. Let s : C\R− → U be a continuous map such
that p ◦ s = id and s(1) = 1, where R− = {x ∈ R : x ≤ 0}. If ζ ∈ U , p(ζ) is often identified with
ζ. For ζ ∈Mv, Uζ is a neighborhood of ζ which is isometric to C\R−. For two points ζ0, ζ1 ∈Mv

with ζ1 ∈ Uζ0, we can define a straight line segment `(ζ0, ζ1) ⊂Mv joining ζ0, ζ1.
Let ζ = reiθ ∈Mv with 0 < r < 1 and 0 < |θ| < |πv|. Let S = {ζj}j∈Z be a spiral sequence of

Mv generated by a single element ζ ∈Mv. Note that, in the complete metric spaceMv = Mv∪{0},
the origin is an accumulation point of S. Suppose that

S ∩H+ 6= ∅, (3.1.1)

where H+ := s({z ∈ C : Im(z) > 0}) is an upper half-plane embedded in Mv. Note that the
condition (3.1.1) is independent of r, see Lemma 3.5. Let

Tj = T (ζj , S) := {ξ ∈Mv : dist(ξ, ζj) ≤ dist(ξ, ζk),∀k 6= j} (3.1.2)

be the Voronoi region for the site ζj , j ∈ Z. By the assumption (3.1.1), it is not difficult to see
that the following conditions hold for j, k ∈ Z.

(i) Tj ⊂ Hζj , where H = s({z ∈ C : Re(z) > 1
2}).

(ii) If ζk 6∈ Uζj , then Tj ∩ Tk = ∅.

(iii) Tj is a bounded polygon.
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Thus we obtain a polygonal tiling T := {Tj}j∈Z of Mv, which is called a Voronoi spiral multiple
tiling with multiplicity |v|.

Two distinct Voronoi regions Tj , Tk are called adjacent if the intersection Tj∩Tk ⊂Mv contains
at least two points. In fact, if two distinct polygonal regions Tj , Tk are adjacent, Tj ∩ Tk is a line
segment of positive length. If T0 is adjacent to Tm, the multiplicative symmetry of S implies that
Tj is adjacent to Tj+m for all j ∈ Z. In the phyllotaxis theory, the pair {m,n} of positive integers
is called the opposed parastichy pair if T0 is adjacent to Tm, Tn and arg(ζm) arg(ζn) < 0; the pair
{m,n} is called the non-opposed parastichy pair if T0 is adjacent to Tm, Tn and arg(ζm) arg(ζn) >
0.

A dual of a Voronoi diagram is called a Delaunay diagram. If Tj is adjacent to Tk, the line
segment `(ζj , ζk) ⊂ Uζj joining the sites ζj and ζk is called a Delaunay edge. Denote the set
of Delaunay edges for the site set S by E . A Delaunay polygon is a connected component of
the complement in Mv of the union of the Delaunay edges. An important property is that two
Delaunay edges have a point in common only at their endpoint. Thus a line segment is a side
of a Delaunay polygon if and only if it is a Delaunay edge. A finite set S′ ⊂ S is equal to the
set of the corners of a Delaunay polygon if and only if there exists a disk D ⊂ Mv such that
∂D ∩ S = S′ and int(D) ∩ S = ∅. Hence each Delaunay polygon is inscribed in a circle.

For distinct a1, a2, a3 ∈ C, let

∠(a1, a2, a3) := Arg
(
a1 − a2

a3 − a2

)
,

where −π < Arg(z) ≤ π denotes the principal argument of z ∈ C∗. For distinct α1, α2, α3 ∈ Mv

with α1, α2, α3 ∈ Uα1 ∩ Uα2 ∩ Uα3, let

∠(α1, α2, α3) := ∠(p(α1), p(α2), p(α3)).

Lemma 3.1. Let ζ = reiθ ∈ Mv with 0 < r < 1, and suppose the condition (3.1.1). Let
T := {Tj}j∈Z be a Voronoi tiling of Mv with the site set S = {ζj}j∈Z. Let j 6= k ∈ Z, and suppose
that ζk ∈ Uζj. Then the following conditions are mutually equivalent.

(i) The Voronoi regions Tj, Tk are adjacent.

(ii) The line segment `(ζj , ζk) is a Delaunay edge.

(iii) There exists a disk D ⊂ Uζj such that ∂D ∩ S = {ζj , ζk} and int(D) ∩ S = ∅.

(iv) For any ζi1 , ζi2 ∈ Uζj ∩ Uζk, we have

∠(ζj , ζi1 , ζk) + ∠(ζk, ζi2 , ζj) < π (3.1.3)

whenever ∠(ζj , ζi1 , ζk) > 0 and ∠(ζk, ζi2 , ζj) > 0.

Proof. (i) ⇔ (ii): Obvious.
(iii) ⇔ (iv): Obvious.
(ii) ⇒ (iv): A Delaunay edge `(ζj , ζk) is a side of two Delaunay polygons, say W1,W2. Let

ζα 6∈ {ζj , ζk} be a corner of W1. We may suppose that ∠(ζj , ζα, ζk) > 0 without loss of generality.
Any ζi2 ∈ Uζj ∩ Uζk with ∠(ζj , ζi2 , ζk) < 0 is out of the circumscribed circle of W1, so we have
∠(ζj , ζα, ζk) + ∠(ζk, ζi2 , ζj) < π. For any ζi1 ∈ Uζj ∩ Uζk with ∠(ζj , ζi1 , ζk) > 0, we have
∠(ζj , ζi1 , ζk) ≤ ∠(ζj , ζα, ζk). Thus we obtain 3.1.3.

(iv) ⇒ (ii): Suppose that `(ζj , ζk) is not a Delaunay edge. If ζj , ζk are corners of a Delaunay
polygon W , then there exist ζi1 , ζi2 6∈ {ζj , ζk} which are corners of W , such that ∠(ζj , ζi1 , ζk) > 0
and ∠(ζk, ζi2 , ζj) > 0. In this case we have

∠(ζj , ζi1 , ζk) + ∠(ζk, ζi2 , ζj) = π
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since W is inscribed in a circle.
If ζj , ζk are not corners of a same Delaunay polygon, then the line segment `(ζj , ζk) intersects

some Delaunay edge `(ζi1 , ζi2). We may suppose that ∠(ζi1 , ζk, ζi2), ∠(ζi2 , ζj , ζi1) > 0 without
loss of generality. This implies that

∠(ζj , ζi1 , ζk), ∠(ζk, ζi2 , ζj) > 0.

Since we have already shown that (ii) ⇒ (iv), we obtain

∠(ζi1 , ζk, ζi2) + ∠(ζi2 , ζj , ζi1) < π,

and hence ∠(ζj , ζi1 , ζk) + ∠(ζk, ζi2 , ζj) ≥ π. This completes the proof.

Lemma 3.2. Let ζ = reiθ ∈ Mv with 0 < r < 1. Let m,n > 0 be positive integers. Sup-
pose that ζm, ζn ∈ U , and �(ζm, ζm+n, ζn, 1) is a quadrilateral in this order of vertices. If
arg(ζm) arg(ζn) ≥ 0, then we have

|∠(ζm, ζm+n, ζn)| + |∠(ζn, 1, ζm)| < π. (3.1.4)

Proof. We may assume that 0 ≤ arg(ζm), arg(ζn) < π without loss of generality, and we assume
that ∠(ζm, ζm+n, ζn), ∠(ζn, 1, ζm) > 0. We have

∠(ζm, ζm+n, ζn) + ∠(ζn, 1, ζm) = ∠(ζ−n, 1, ζ−m) + ∠(ζn, 1, ζm)
≤ ∠(2, 1, ζ−m) + ∠(0, 1, ζm)

< ∠(2, 1, e−mθ) + ∠(0, 1, emθ) = π.

Lemma 3.3. Let ζ = reiθ ∈ Mv, and suppose that 0 < r < 1, 0 < |θ| < |πv| and (3.1.1) for
S = {ζj}j∈Z. Let T := {Tj}j∈Z be a Voronoi tiling of Mv with the site set S. Then there exist
m,n > 0 such that {m,n} is an opposed parastichy pair of T , and T0 ∩ Tm+n 6= ∅. If T0 is
adjacent to Tm+n, then it is a hexagon; if T0 is not adjacent to Tm+n, then it is a quadrilateral.

Proof. If T0 is adjacent to Tm for some m, then by the multiplicative symmetry of S, T0 is
also adjacent to T−m. A bounded polygon T0 has at least three sides, so there exists n > 0,
n 6= m, such that T0 is also adjacent to T±n. The Delaunay diagram contains the Delaunay
edges `(ζj , ζj+m), `(ζj , ζj+n), j ∈ Z, which form a lattice. In the quadrilateral �(1, ζm, ζm+n, ζn)
surrounded by Delaunay edges, there are three possibilities.

(i) �(1, ζm, ζm+n, ζn) is a Delaunay polygon,

(ii) `(1, ζm+n) is a Delaunay edge and the triangles

4(ζm, ζm+n, 1), 4(1, ζm+n, ζn)

are Delaunay polygons, or

(iii) `(ζm, ζn) is a Delaunay edge and the triangles

4(ζm, ζn, 1), 4(ζm, ζm+n, ζn)

are Delaunay polygons.
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Figure 3.1: (a) A Voronoi spiral tiling with an opposed parastichy pair {7, 4}. The genera-
tor ζ = (0.9011 · · · ) exp(2πi · (5 +

√
5)/10) is marked ?1 in Figure 3.4. (b) A Voronoi spiral

multiple tiling of multiplicity v = 2, with an opposed parastichy pair {7, 4}. The generator
ζ = (0.7730 · · · ) exp(2πi/

√
5) is marked ?2 in Figure 3.4.

If arg(ζm) arg(ζn) ≥ 0, we have (3.1.4) by Lemma 3.2, and so `(ζm, ζn) is a Delaunay edge. This
implies that if `(1, ζm+n) is a Delaunay edge, we have arg(ζm) arg(ζn) < 0, and so {m,n} is an
opposed parastichy pair of T , where T0 is a hexagon which is adjacent to T±m, T±n and T±(m+n).

If �(1, ζm, ζm+n, ζn) is a Delaunay polygon, then we have arg(ζm) arg(ζn) < 0 again, and so
{m,n} is an opposed parastichy pair of T . If this is the case, the intersection T0 ∩ Tm+n consists
of a point which is the center of the circumscribed circle of �(1, ζm, ζm+n, ζn).

If `(ζm, ζn) is a Delaunay edge, then T0 is adjacent to T±(m−n). If we denote by m′ =
min(m,n), n′ = |m− n|, the tile T0 is a hexagon which is adjacent to T±m′ , T±n′ and T±(m′+n′).
This completes the proof.

Figure 3.1 shows two examples of Voronoi spiral (multiple) tilings with an opposed parastichy
pair {4, 7}. Their generators are marked in Figure 3.4.

3.2 Parastichy transitions of Voronoi spiral tilings

Lemma 3.4. Let ζ = reiθ ∈ Mv, and suppose that 0 < r < 1, 0 < |θ| < |πv| and (3.1.1).
Let {m,n} be an opposed parastichy pair of a Voronoi tiling T := {Tj}j∈Z of Mv generated by
S = {ζj}j∈Z. Let a = [[ mθ

2πv ]], b = [[ nθ
2πv ]]. Then a

m ,
b
n are a pair of convergents of θ

2πv .

Proof. Since {m,n} is an opposed parastichy pair, we may suppose that −π < arg(ζn) < 0 <
arg(ζm) < π, without loss of generality. Since arg(ζn) = nθ − 2πbv, arg(ζm) = mθ − 2πav, we
obtain a

m < θ
2πv <

b
n .

The sides of the quadrilateral W0 = �(1, ζm, ζm+n, ζn) are Delaunay edges. By the multi-
plicative symmetry of S, the family of quadrilaterals

{ζjW0}j∈Z = {�(ζj , ζj+m, ζj+m+n, ζj+n)}j∈Z

is a tiling of Mv. Let

ξ := log r + iθ ∈ log(ζ),
ξm := m log r + i(mθ − 2πav) ∈ log(ζm),
ξn := n log r + i(nθ − 2πbv) ∈ log(ζn).

Let W ′
0 be a connected component of log(W0) ⊂ C which has corners 0, ξm, ξm + ξn, ξn. Since Mv

is connected, ξ is contained in the lattice ξmZ + ξnZ in C and we have ξ = k1ξm + k2ξn for some
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k1, k2 ∈ Z. Hence m,n are relatively prime, and we have

(ξmZ + ξnZ) ∩ iR = {k(nξm −mξn)}k∈Z = 2πv(mb− na)iZ.

However, {(k1ξm + k2ξn)W ′
0 mod 2vπi}k1,k2∈Z is a tiling of the cylinder Cv = C/2vπiZ by the

assumption. Thus we obtain mb− na = 1.

A (principal or intermediate) convergent a
m of x = θ

2πv is called admissible if

0 <
∣∣∣∣ θ2πv − a

m

∣∣∣∣ < ∣∣∣∣ 1
2mv

∣∣∣∣ , (3.2.1)

i.e., 0 < |mθ − 2πav| < π. Let H+ := s({z ∈ C : Im(z) > 0}), H− := s({z ∈ C : Im(z) < 0}) be
half-planes in Mv.

Lemma 3.5. Let v 6= 0 be an integer. For 0 < |θ| < |πv|, the following conditions are mutually
equivalent.

(i) θ/2πv has a pair of convergents that are both admissible.

(ii) For any r > 0, we have S ∩H+ 6= ∅, where S = {ζj}j∈Z, ζ = reiθ ∈Mv.

(iii) kθ 6∈ 2πvZ for k = 1, . . . , |2v|.

Proof. If θ
2πv is an irrational number, then it is easy to see that all of the conditions (i), (ii) and

(iii) hold.
If θ

2πv is a rational number, there exists a pair of convergents a
m < b

n of θ/2πv such that
θ

2πv = a+b
m+n . If v > 0, we see the equivalence: (3.2.1) ⇔ mθ − 2πav < π, −π < nθ − 2πbv ⇔

m+ n > 2v ⇔ kθ
2πv 6∈ Z for 0 < k ≤ 2v. The case v < 0 is similarly shown.

Let m0 = min{m > 0 : ζm ∈ H+}, n0 = min{n > 0 : ζn ∈ H−}, a0 = [[m0θ
2πv ]], b0 = [[n0θ

2πv ]].
Then a0

m0
< b0

n0
is a pair of convergents of x = θ

2πv that are both admissible.

Lemma 3.6. Let v 6= 0 be an integer. Let ζ = reiθ ∈ Mv with 0 < r < 1 and 0 < |θ| < |πv|,
and assume the condition (3.1.1). Let T := {Tj}j∈Z be a Voronoi tiling of Mv generated by
S = {ζj}j∈Z. If r is small, T0 is adjacent to T±m0, T±n0 and T±(m0+n0).

Proof. If j > 0 and ζj ∈ Uζm0 ∪ U , then the minimality of m0 and the multiplicative symmetry
of S imply that j ≥ m0. Since r is small, we have

∠(ζm0 , ζj , 1) < ∠(p(ζm0), 0, 1) + ε,

where ε > 0 is a sufficiently small. If k < 0 and ζk ∈ U ∩ Uζm0 , then we have

|∠(1, ζk, ζm0)| = |∠(ζ−k, 1, ζm0−k)| < ε

because ‖ζ−k‖, ‖ζm0−k‖ are small. Therefore, we have

∠(ζm0 , ζj , 1) + ∠(1, ζk, ζm0) < ∠(p(ζm0), 0, 1) + 2ε < π

for any ζj , ζk ∈ U ∩ Uζm0 with ∠(ζm0 , ζj , 1),∠(1, ζk, ζm0) > 0. By Lemma 3.1, `(1, ζm0) is a
Delaunay edge, and hence T0 is adjacent to Tm0 . The argument for the Delaunay edge `(1, ζn0)
is similar.

There are three possibilities:

(i) `(1, ζm0+n0) is an Delaunay edge,

(ii) `(ζm0 , ζn0) is an Delaunay edge, or
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(iii) �(1, ζm0 , ζm0+n0 , ζn0) is a Delaunay polygon.

By the minimality condition ofm0, n0 and the multiplicative symmetry of S, we have ζm0 6∈ H+ζ
n0

or ζn0 6∈ H−ζ
m0 , which are mutually equivalent. Thus �(ζm0 , 0, ζn0 , 1) and �(1, ζm0 , ζm0+n0 , ζn0)

are concave quadrilaterals, and we have

∠(1, ζm0 , ζm0+n0) + ∠(ζm0+n0 , ζn0 , 1) < π.

Hence `(1, ζm0+n0) is a Delaunay edge.

We fix θ, 0 < |θ| < |πv|, and denote by ζ(r) := reiθ ∈Mv, 0 < r < 1. Let S(r) := {ζ(r)j}j∈Z.
Let T (r) := {Tj(r)}j∈Z be the corresponding Voronoi tiling. Let

Λ = {0 < r < 1 : T0(r) is a quadrilateral}.

Lemma 3.7. Fix v and θ, and suppose that 0 < |θ| < |πv|. Let ζ = ρeiθ, 0 < ρ < 1.
Suppose that the tiling T (ρ) has an opposed parastichy pair {m,n} and a Delaunay polygon
�(ζ(ρ)m, ζ(ρ)m+n, ζ(ρ)n, 1). Then there exists a small ε > 0 such that the followings hold.

(i) For r ∈ (ρ, ρ+ ε), the tile T0(r) in T (r) is adjacent to T±m(r), T±n(r) and T±(m+n)(r).

(ii) For r ∈ (ρ− ε, ρ), the tile T0(r) in T (r) is adjacent to T±m(r), T±n(r) and T±(m−n)(r).

Proof. We may suppose that −π < arg(ζ(ρ)n) < 0 < arg(ζ(ρ)m) < π without loss of generality.
Since Lemma 3.1 (iv) is an open condition, `(1, ζ(r)m) and `(1, ζ(r)n) are Delaunay edges if r is
close to ρ. The sum of the angles

φ(r) := ∠(1, ζ(r)m, ζ(r)m+n) + ∠(ζ(r)m+n, ζ(r)n, 1) (3.2.2)
= ∠(ζ(r)−m, 1, ζ(r)n) + ∠(ζ(r)m, 1, ζ(r)−n)

is a decreasing function of r. Therefore, for ρ < r < ρ + ε with ε > 0 small, we have φ(r) <
φ(ρ) = π, and hence `(1, ζ(r)m+n) is a Delaunay edge. For ρ− ε < r < ρ, we have φ(r) > π, and
so `(ζ(r)m, ζ(r)n) is a Delaunay edge.

In Lemma 3.7, the opposed parastichy pair {m,n} is called an extension of the opposed
parastichy pair {|m− n|,min(m,n)}, and the pair {|m− n|,min(m,n)} is called a contraction of
{m,n}. Lemma 3.7 implies that Λ is a discrete subset of the open interval (0, 1).

Lemma 3.8. Let 0 < ρ < 1, and suppose that the tiling T (ρ) has opposed parastichy pairs {m,n}
and {m+ n, n}. Then there exists ρ′ ∈ (ρ, 1) such that the followings hold.

(i) For each r ∈ [ρ, ρ′), the tiling T (r) has opposed parastichy pairs {m,n} and {m+ n, n}.

(ii) The tiling T (ρ′) has an opposed parastichy pair {m+ n, n}, and T0(ρ′) is a quadrilateral.

Proof. Without loss of generality we may assume that

−π < arg(ζ(ρ)n) < 0 < arg(ζ(ρ)m+n) < arg(ζ(ρ)m) < π

and ∠(ζ(ρ)m, ζ(ρ)m+n, ζ(ρ)n),∠(ζ(ρ)n, 1, ζ(ρ)m) > 0. Let

ρ′ := sup{r ≥ ρ : `(1, ζ(r)j) ∈ E(r), j = m,n,m+ n},

where E(r) denotes the set of the Delaunay edges for the site set S(r). Since

∠(ζ(1)m, ζ(1)m+n, ζ(1)n) < 0,

there exist r′ ∈ (ρ, 1) such that

∠(ζ(r′)m, ζ(r′)m+n, ζ(r′)n) < 0,

where ζ(r′)m+n lands on the line segment `(1, ζ(r′)m). Then, `(1, ζ(r′)m) is not a Delaunay edge,
and we obtain ρ′ < 1.

There are three possibilities:
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(i) `(1, ζ(ρ′)m) 6∈ E(ρ′),

(ii) `(1, ζ(ρ′)m+n) 6∈ E(ρ′), or

(iii) `(1, ζ(ρ′)n) 6∈ E(ρ′).

Since T (ρ′) has an opposed parastichy pair by Lemma 3.3, we have `(1, ζ(ρ′)n) ∈ E(ρ′). Since
the sum of the angles φ(r) given in (3.2.2) is a decreasing function of 0 < r < 1, we have
φ(ρ′) < φ(ρ) < π, and hence `(1, ζ(ρ′)m+n) ∈ E(ρ′). Therefore, we have `(1, ζ(ρ′)m) 6∈ E(ρ′).
Hence �(1, ζ(ρ′)m+n, ζ(ρ′)m+2n, ζ(ρ′)n) is a Delaunay polygon.

The following is a converse of Lemma 3.4.

Proposition 3.9. Fix v, θ such that 0 < |θ| < |πv|. Let a/m < b/n be a pair of convergents of
θ/2πv that are both admissible. Then there exists ρ ∈ (0, 1) such that T0(ρ) is adjacent to T±m(ρ),
T±n(ρ) and T±(m+n)(ρ).

If, in addition, (a−b)/(m−n) is an admissible convergent of θ/2πv, then there exists ρ′ ∈ (0, ρ)
such that T (ρ′) is a quadrilateral tiling with an opposed parastichy pair {m,n}.

Proof. It is known in elementary number theory that a pair of convergents of x is written as a
pair pj/qj , pj,k/qj,k where j ≥ 0 and 0 < k ≤ aj+1. Hence, an opposed parastichy pair is written
as {m,n} = {qj , qj,k} for some j ≤ 0, 0 < k ≤ aj+1. The extension of {qj , qj,k} is equal to
{qj , qj,k+1} if k + 1 < aj+1; {qj , qj+1} if k = aj+1.

Lemmas 3.6, 3.7 and 3.8 imply that the sequence of extensions of the opposed parastichy pairs
for T (r), as r → 1, is written as the sequence of the pairs {qj , qj,k}. Thus, for any admissible
pair pj/qj , pj,k/qj,k of convergents of θ/2πv, there exists r ∈ (0, 1) such that the tiling T (r) has
an opposed parastichy pair {qj , qj,k}.

Figure 3.2 shows the parastichy transition of Voronoi spiral tilings with the fixed divergence
angle θ = 2πτ , τ = 1+

√
5

2 , from a hexagonal tiling with opposed parastichy pairs {3, 5}, {5, 8},
through a quadrilateral tiling with an opposed parastichy pair {5, 8}, to a hexagonal tiling with
opposed parastichy pairs {5, 8}, {8, 13}.

3.3 Quadrilateral Voronoi spiral tilings

Let ζ = reiθ ∈Mv with 0 < r < 1. Let m,n > 0 be relatively prime integers. If a Voronoi region
of a Voronoi tiling for the spiral sequence S = {ζj}j∈Z becomes a quadrilateral, then the four
points 1, ζm, ζm+n and ζn lie on a same circle in this order of vertices.

Let

Ψm,n(z) :=
(zm − zm+n)(zn − 1)
(zn − zm+n)(zm − 1)

=
zm(zn − 1)2

zn(zm − 1)2

be a rational function of one complex variable, and

ψm,n,θ(r) := (1 − rm)(1 − rn) cos
mθ

2
cos

nθ

2
+ (1 + rm)(1 + rn) sin

mθ

2
sin

nθ

2

= (1 + rm+n) cos
m− n

2
θ − (rm + rn) cos

m+ n

2
θ.

We have

Ψm,n(z) = Ψm,n(1/z) = 1/Ψn,m(z), ψm,n,θ(r) = ψn,m,θ(r) = rm+nψm,n,θ(1/r).

Lemma 3.10. Let m,n be distinct positive integers. Let z = reiθ ∈ C\R, and suppose that
zm 6= 1. The following conditions are mutually equivalent.

39



(a) -7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

89

10

11

12
13

14

15

(b) -10

-9 -8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

89

10

11

12

13

14

15

(c) -20

-18

-16

-15

-14

-13

-12

-11

-10

-9
-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

89

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25 26

27

28

29

30

(d)

-35

-33

-27

-26

-25

-24

-23

-22

-21

-20

-19

-18

-17

-16

-15

-14

-13

-12

-11

-10

-9 -8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

89

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29
30

-31

-29

Figure 3.2: Voronoi spiral tilings generated by ζ = reiθ with the fixed divergence angle θ = 2πτ ,
τ = 1+

√
5

2 . As r increases, the Fibonacci parastichy numbers also increase. (a) r = 0.9, hexagonal
tiling with opposed parastichy pairs {3, 5}, {5, 8}. (b) r = 0.92943 · · · , quadrilateral tiling with
an opposed parastichy pair {5, 8}. (c) r = 0.96, hexagonal tiling with opposed parastichy pairs
{5, 8}, {8, 13}. (d) r = 0.97328 · · · , quadrilateral tiling with an opposed parastichy pair {13, 8}.
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(i) The four points 1, zm, zm+n, zn form a quadrilateral �(1, zm, zm+n, zn) which is inscribed
in a circle, in this order of vertices.

(ii) Ψm,n(z) < 0.

(iii) ψm,n,θ(r) = 0.

Proof. (i) ⇔ (ii): The cross ratio of 1, zm, zm+n, zn is given as Ψm,n(z).

(ii) ⇔ (iii): We have Re
√

Ψm,n(z) = Re(z
m−n

2
zn−1
zm−1) = |z|

m−n
2

|zm−1|2ψm,n,θ(r).

3.3.1 Generators of quadrilateral Voronoi spiral tilings

In this section, we consider a set of generators ζ which produce quadrilateral Voronoi spiral tilings
for each opposed parastichy pair.

Let I = (−π, π] be a half-open interval, and consider an injective map

ιm,n : R → I2, ιm,n(θ) =
(

2π〈mθ
2π

〉, 2π〈nθ
2π

〉
)
,

where 〈x〉 ∈ (−1
2 ,

1
2 ] denotes a fractional part of x ∈ R, such that [[x]] := x− 〈x〉 ∈ Z is an integer

which is the nearest to x. The image of ιm,n is a stripe in the square I2 written as

ιm,n(R) =
∪

|v|<(m+n)/2

{(θ1, θ2) ∈ I2 : nθ1 −mθ2 = 2πv}.

Let ∆ = ∆+ ∪ ∆−,

∆+ = {(θ1, θ2) ∈ I2 : 0 < θ1 < θ2 + π < π},
∆− = {(θ1, θ2) ∈ I2 : 0 < θ2 < θ1 + π < π}.

Then ιm,n(R) ∩ ∆ is a union of line segments written as

ιm,n(R) ∩ ∆ =
∪

0<|v|<max(m,n)/2

`m,n,v, `m,n,v := {(θ1, θ2) ∈ ∆ : nθ1 −mθ2 = 2πv}.

Lemma 3.11. Let m,n > 0 be relatively prime integers, and θ ∈ R. Then the followings
conditions are mutually equivalent.

(i) ιm,n(θ) ∈ ∆.

(ii) (cos m
2 θ cos n

2 θ)(sin
m
2 θ sin n

2 θ) < 0 and | cos m
2 θ cos n

2 θ| > | sin m
2 θ sin n

2 θ|.

(iii) The equation ψm,n,θ(r) = 0 has a (unique) solution r in (0, 1).

Proof. (i) ⇔ (ii): Obvious.
(ii) ⇔ (iii): Since (1− rm)(1− rn) is a decreasing function and (1 + rm)(1 + rn) is an increasing
function of r, the Intermediate Value Theorem can be applied to ψm,n,θ in the interval [0, 1], to
show the existence and the uniqueness of the solution r ∈ (0, 1). The converse is also obvious.

Figure 3.3 shows the set ι7,4(R) ∩ (∆+ ∪ ∆−), consisting of six solid lines. It is a parameter
space for quadrilateral Voronoi spiral (multiple) tilings with an opposed parastichy pair {4, 7}.

Let Bm,n = {z ∈ D\R : Ψm,n(z) < 0}. Let Bm,n,v be the set of ζ = reiθ ∈Mv, 0 < r < 1, such
that the Voronoi tiling T = {Tj}j∈Z of Mv generated by S = {ζj}j∈Z is a quadrilateral tiling with
an opposed parastichy pair {m,n} and n arg(ζm)−m arg(ζn) = 2πv. Note that Bm,n,v = Bn,m,−v.
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Figure 3.3: The set ι7,4(R) ∩ (∆+ ∪ ∆−), consisting of six solid lines, denotes the set of the
points (arg(ζ7), arg(ζ4)), where ζ generates a quadrilateral (multiple) spiral tiling with an opposed
parastichy pair {4, 7}. The dotted lines are the lines 4θ1 − 7θ2 = 2πv, −6 ≤ v ≤ 6. On each
endpoint ι7,4(θ) of solid lines the rational number θ/2π is shown in the figure.

Theorem 3.12. Let m > n > 0 be relatively prime integers. Then we have

Bm,n =
∪

0<|v|<m/2

p(Bm,n,v).

Proof. If ζ ∈ Bm,n,v, then the Delaunay polygon T0 = �(1, ζm, ζm+n, ζn) is inscribed in a circle.
By Lemma 3.10, we see that fm,n(p(ζ)) < 0, and hence p(ζ) ∈ Bm,n. Thus we obtain Bm,n ⊃∪

0<|v|<m/2 p(Bm,n,v).
Suppose that z0 = r0eiθ ∈ Bm,n, 0 < r0 < 1, 0 < θ < 2π. Let a, b be positive integers such

that 0 ≤ a/m < b/n ≤ 1 and mb − na = 1. Let v := n〈mθ
2π 〉 − m〈nθ

2π 〉, a
′ := [[mθ

2π ]], b′ := [[nθ
2π ]],

d := ab′ − a′b, θ′ := θ + 2πd, and ζ0 := r0eiθ′ ∈ Mv. Then we have v = mb′ − na′ ∈ Z,
0 < θ′/2πv < 1, and a

m < θ′

2πv < b
n . The rational numbers a/m, b/n are a pair of convergents

of θ′/2πv that are both admissible. For v, θ′ fixed, Proposition 3.9 implies the existence of
r such that ζ = reiθ′ ∈ Mv gives rise to a quadrilateral Voronoi tiling T with an opposed
parastichy pair {m,n}, and Lemma 3.11 implies the uniqueness of r such that ψm,n,θ′(r) = 0.
Since �(1, ζm

0 , ζ
m+n
0 , ζn

0 ) ⊂ Mv is indeed inscribed in a circle, it is a Delaunay polygon, and ζ0
generates a quadrilateral Voronoi spiral multiple tiling.

Here we describe the details of the branches Bm,n,v. Let Iv = (−|πv|, |πv|], and consider the
mappings

ιm,n,v : R → Iv × Iv, ιm,n,v(θ) =
(
|2πv|〈 mθ

|2πv|
〉, |2πv|〈 nθ

|2πv|
〉
)
.

Let ∆v := ∆+
v ∪∆−

v , ∆+
v := {(θ1, θ2) ∈ Iv × Iv : 0 < θ1 < θ2 + π < π}, ∆−

v := {(θ1, θ2) ∈ Iv × Iv :
0 < θ2 < θ1 + π < π}, and `′m,n,v := {(θ1, θ2) ∈ ∆v : nθ1 −mθ2 = 2πv}.

Lemma 3.13. Let m > n > 0 be relatively prime integers and 0 < |v| < m
2 . Let a, b > 0

be integers such that 0 ≤ a
m < b

n ≤ 1 and bm − an = 1. Define the intervals Im,n,v ⊂ R as
follows. First, an endpoint of Im,n,v is 2πav

m . The other endpoint of Im,n,v is given as follows:
2πbv

n if |v| < n
2 ; bπ if v = n

2 ; −bπ if v = −n
2 ; π(2(a−b)v+1)

m−n if n
2 < v < m

2 ; and π(2(a−b)v−1)
m−n if

−m
2 < v < −n

2 . Then
ιm,n,v|Im,n,v : Im,n,v → `′m,n,v
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Figure 3.4: The set B7,4 of the generators consists of the arcs p(B7,4,v), v = ±1,±2,±3, which
are branches of the real algebraic curve Re

√
Ψ7,4(z) = 0. A rational number x on the unit circle

denotes the point e2iπx. The marks N and � indicate the points z where Ψ7,4(z) = 0 and −∞
respectively. The arc p(B7,4,1) connects the point e(−2/7)·2iπ with e(−1/4)·2iπ. The arc p(B7,4,2)
connects the point e(3/7)·2iπ with −0.6776 · · · , where r = 0.6776 · · · is a root of the equation
7(1 − r7)(1 − r4) − 4(1 + r7)(1 + r4) = 0. The arc p(B7,4,3) connects the point e(1/7)·2iπ with the
origin. The arc p(B7,4,−v) is a complex conjugate of p(B7,4,v), for each v = 1, 2, 3.

is a homeomorphism. Moreover, there exists a real analytic function ρm,n,v : Im,n,v → R such
that the mapping

ϕm,n,v : Im,n,v → Bm,n,v, ϕm,n,v(θ) = ρm,n,v(θ)eiθ

is a homeomorphism.

Proof. First, we have ιm,n,v(2πav
m ) = (0,−2πv

m ). If |v| < n
2 , we have ιm,n,v(2πbv

n ) = (2πv
n , 0). If

v = n
2 , we have ιm,n,v(bπ) = (π, 0). If v = −n

2 , we have ιm,n,v(−bπ) = (−π, 0). If n
2 < v < m

2 ,

then ιm,n,v(2π
(a−b)v+ 1

2
m−n ) = (m−2v

m−n π,
n−2v
m−nπ) lies on the boundary line θ1 − θ2 = π of ∆+

v . If −m
2 <

v < −n
2 , then ιm,n,v(2π

(a−b)v− 1
2

m−n ) = (−m−2v
m−n π, −n−2v

m−n π) lies on the boundary line θ1 − θ2 = −π of
∆−

v . Finally confirm that the length of Im,n,v is less than or equal to 1/2m.
The function 0 < r = ρm,n,v(θ) < 1 is given as a unique solution of ψm,n,v(r) = 0.

Lemma 3.14. Let m > n > 0 be relatively prime integers and 0 < |v| < m/2. Let a, b be positive
integers such that 0 ≤ a/m < b/n ≤ 1 and mb−na = 1. The endpoints of the arc Bm,n,v are given
as follows. First, limθ→2πav/m ρm,n,v(θ) = 1. For 0 < |v| < n

2 , we have limθ→2πbv/n ρm,n,v(θ) = 1.
For |v| = n

2 , we have limθ→±bπ ρm,n,v(θ) = −r̃, where r̃ ∈ (0, 1) is a unique root of the equation

m(1 − rm)(1 − rn) − n(1 + rm)(1 + rn) = 0. (3.3.1)

For n
2 < |v| < m

2 , we have lim
θ→π

2(a−b)v±1
m−n

ρm,n,v(θ) = 0.

Proof. As θ → 2π av
m or θ → 2π bv

n , we have sinmθ → 0 or sinnθ → 0, respectively, and so the
positive root r of ψm,n,θ(r) = 0 tends to a root of the equation (1 − rm)(1 − rn) cos πv

m = 0 or
(1 − rm)(1 − rn) cos πv

n = 0, either of which is equal to 1. As θ → ±bπ, where n is even, the
positive root of ψm,n,θ(r) = 0 tends to a root of the equation

(
m

2
(1 − rm)(1 − rn) − n

2
(1 + rm)(1 + rn)) sin

mπ

2
cos

nπ

2
= 0,

which has a unique root 0 < r̃ < 1.
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Figure 3.5: The set B1∪B−1 of generators of quadrilateral Voronoi spiral tilings. The arc Bm,n,1 is
denoted by (m,n), and Bm,n,−1 = Bn,m,1 by (n,m). The arcs Bm,1,±1 accumulate to the interval
[0, 1] on the real axis, as m→ ∞.

As θ → π 2(a−b)v±1
m−n , we have cos m−n

2 θ → 0, and so the positive root of ψm,n,θ(r) = 0 tends to

a root of the equation (rm + rn) cos −4v±(m+n)
2(m−n) π = 0, which is equal to 0.

Figure 3.4 shows thet set B7,4 = ∪=±1,±2,±3p(B7,4,v), which is a subset of a real algebraic
curve defined by an inequality Ψ7,4(z) < 0, i.e., by an equation Re

√
Ψ7,4(z) = 0. Each arc

B7,4,v consists of the generators of Voronoi quadrilateral (multiple) spiral tilings with an opposed
parastichy pair {4, 7}. The polynomial (3.3.1) for m = 7, n = 4, has a root r̃ = 0.6776 · · · . So
the arc p(B7,4,2) has an endpoint −r̃ = −0.6776 · · · . It is a critical point of the function Ψ7,4.

Let R := {(m,n) ∈ Z2 : m > n > 0 are relatively prime}. Let δ(θ) = {re
√
−1θ : 0 < r < 1} be

a radial line segment in D.

Theorem 3.15. Let Bv :=
∪

(m,n)∈R p(Bm,n,v). The union B :=
∪

v>0Bv is a dense subset of D.

Proof. For each v > 0, we shall show that a radial line segment δ(2πbv/n) is contained in the
closure of Bv :=

∪
(m,n)∈R p(Bm,n,v), whenever n, b are relatively prime and 1 ≤ b < n < 2v.

Let 0 < a < m be integers, such that m > 2v and mb − na = 1. Let mj = nj + m and
aj = bj + a for j ≥ 0. Then, we have mjb − naj = 1, and aj/mj → b/n as j → +∞. Since
n/2 < v < mj/2, the arc p(Bmj ,n,v) connects the mj th root of unity e2π

√
−1ajv/mj with the origin.

As j → +∞, the length of the interval Imj ,n,v = (2πajv/mj , 2π((aj − b)v+ 1
2)/(mj −n)) tends to

0. Thus, the curves p(Bmj ,n,v) accumulate to the radial line segment δ(2πbv/n) as j → +∞.

Figure 3.5 shows the set B1 ∪ B−1 of generators of quadrilateral Voronoi spiral tilings. This
indicates that the arcs Bm,1,±1 accumulate to the unit interval [0, 1] = δ(0) as m→ +∞.

3.3.2 Shape limit of quadrilateral Voronoi spiral tilings

Let v > 0, θ ∈ (−πv, πv]. In this section we suppose that θ/2πv is a fixed irrational number.
In the continued fraction expansion of x = θ/2πv, we defined the sequences qj and qj,k, j > 0,
0 ≤ k ≤ aj+1, in Section 2.3. For each j > 0 and 0 ≤ k ≤ aj+1, let aj,k/mj,k < bj,k/nj,k

be a pair of convergents of x = θ/2πv such that {mj,k, nj,k} = {qj , qj,k}. If the convergents
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aj,k/mj,k, bj,k/nj,k are admissible, let 0 < r = rj,k < 1 be the root of the equation ψmj,k,nj,k,θ(r) =
0, and ζj,k = rj,keiθ ∈ Mv. The Voronoi tiling T = T (ζj,k) for the spiral site set S generated by
ζj,k is a quadrilateral Voronoi spiral multiple tiling.

Lemma 3.16. Let v > 0, θ ∈ (−πv, πv], and suppose that θ
2πv is an irrational number. Then,

all the angles of the quadrilateral �(1, ζmj,k

j,k , ζ
mj,k+nj,k

j,k , ζ
nj,k

j,k ) tend to π/2 as j → ∞.

Proof. Denote by m = mj,k, n = nj,k, ζ = ζj,k for the sake of simplicity. First note that we have
−π < arg(ζn) < 0 < arg(ζm) < π, where −πv < arg(z) < πv denotes an argument of z ∈ Mv.
Since the quadrilateral �(1, ζm, ζm+n, ζn) is inscribed in a circle, we obtain

∠(ζn, 1, ζm) = π − ∠(ζm, ζm+n, ζn),
∠(1, ζm, ζm+n) = π − ∠(ζm+n, ζn, 1).

Moreover we have

π = ∠(ζn, 1, ζm) + ∠(1, ζm, ζm+n) + arg(ζm),
π = ∠(ζn, 1, ζm) + ∠(ζm+n, ζn, 1) − arg(ζn).

Solving these equations, we obtain

∠(ζn, 1, ζm) =
π

2
− 1

2
arg(ζm−n), ∠(1, ζm, ζm+n) =

π

2
− 1

2
arg(ζm+n),

∠(ζm, ζm+n, ζn) =
π

2
+

1
2

arg(ζm−n), ∠(ζm+n, ζn, 1) =
π

2
+

1
2

arg(ζm+n),

all of which tend to π/2 as j → ∞, since

lim
j→+∞

arg(ζm+n) = lim
j→+∞

arg(ζm−n) = 0.

Lemma 3.17. Suppose that the coefficients {aj}j≥0 in the continued fraction expansion

θ

2πv
= [a0, a1, a2, . . . ]

are bounded. Then we have

0 < 1 − rj,k ≤ C

m2
j,k

,

0 < 1 − rj,k −

√
−(2πv)2

mj,knj,k
〈
mj,kθ

2πv
〉〈
nj,kθ

2πv
〉 ≤ C

m3
j,k

, (3.3.2)

where C > 0 is a constant independent of j, k.

Proof. For the (principal or intermediate) convergents pj,k/qj,k of θ/2πv, we have∣∣∣∣ θ2πv −
pj,k

qj,k

∣∣∣∣ ≤ C

q2j,k

where the constant C > 0 is independent of j, k. This implies that∣∣∣∣πv〈qj,kθ2πv
〉
∣∣∣∣ = πv

∣∣∣∣qj,kθ2πv
− pj,k

∣∣∣∣ ≤ Cπv

qj,k
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for sufficiently large j. This implies that∣∣∣∣tan
qj,kθ

2

∣∣∣∣ ≤ C ′

qj,k

where C ′ is independent of j, k. Denote by m = mj,k, n = nj,k, ζ = ζj,k for the sake of
simplicity. Since aj are bounded, the ratios nj,k/mj,k are also bounded. By abuse of notation
we shall sometimes denote the constants that are independent of j, k by the same letter C. The
plastochrone ratio 0 < r = rj,k < 1 is a root of the equation

(1 − rm)(1 − rn) + (1 + rm)(1 + rn) tan
mθ

2
tan

nθ

2
= 0. (3.3.3)

We have

(1 − r)2 =
(1 + rm)(1 + rn)

(1 + r + · · · + rm−1)(1 + r + · · · + rn−1)

∣∣∣∣tan
mθ

2
tan

nθ

2

∣∣∣∣
≤ 2 · 2

1 · 1
· (C
m

)2 =
C

m2
,

and hence

1 − r ≤ C

m
.

This implies that
m−1∑
s=0

rs ≥
m−1∑
s=0

(1 − C

m
)s =

m

C
(1 − (1 − C

m
)m) ≥ C ′m (3.3.4)

with C ′ > 0, since limm→∞(1 − C
m)m = e−C < 1. By applying (3.3.4) to (3.3.3) again, we obtain

(1 − r)2 =
(1 + rm)(1 + rn)

(1 + r + · · · + rm−1)(1 + r + · · · + rn−1)

∣∣∣∣tan
mθ

2
tan

nθ

2

∣∣∣∣
≤ 2 · 2
Cm · Cm

· (C
m

)2 =
C

m4
,

and hence

1 − r ≤ C

m2
.

Here we adopt a notation ϕ = O(m−s) when there exists a constant C independent of j, k such
that |ϕ| ≤ C/ms. Then we have

t := 1 − r = O(m−2),
rm = (1 − t)m = 1 −mt+O(m−2),
rn = (1 − t)n = 1 − nt+O(m−2),

tan mθ
2 = πv〈 mθ

2πv 〉 +O(m−3),

tan nθ
2 = πv〈 nθ

2πv 〉 +O(m−3).

By (3.3.3) we obtain

mt · nt+ (2πv)2〈mθ
2πv

〉〈 nθ
2πv

〉 +O(m−3) = 0,

thus t2 = − (2πv)2

mn 〈 mθ
2πv 〉〈

nθ
2πv 〉 + O(m−5), where we note that 〈 nθ

2πv 〉 < 0 < 〈 mθ
2πv 〉, and hence we

obtain (3.3.2).
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Figure 3.6: A quadrilateral Voronoi spiral tiling generated by (0.9989 · · · )eiθ, θ = 2π · 1+
√

3
2 , with

an opposed parastichy pair {41, 71}. (a) Global view around the origin. (b) Local view around
the tile T0. The shapes of the quadrilaterals are close to the rectangle with the aspect ratio

√
3.

Similar to the rectangular helical Voronoi tilings, we suppose that θ/2πv is a quadratic irra-
tional number.

Let R(θ, v) ⊂ C be the set of ratios (ζnj,k

j,k − 1)/(ζmj,k

j,k − 1), where j > 0, 0 < k ≤ aj+1 and
such that the convergents aj,k/mj,k, bj,k/nj,k of θ/2πv are admissible. Let

Ω(θ, v) := Ω(R(θ, v))

be the limit set, i.e., the set of the accumulation points, of R(θ, v).

Theorem 3.18. Suppose that θ/2πv is a quadratic irrational number. Then we have

Ω(θ, v) = {i (−ψs+1(k))
(−1)s/2 : 0 ≤ s < d, 0 < k ≤ bs+1}. (3.3.5)

In particular, it is a finite set.

Proof. Since θ/2πv is a quadratic irrational number, there exists a constant C1, C2 > 0, indepen-
dent of j > 0, 0 < k ≤ aj+1, such that

C1

q2j,k
<

∣∣∣∣pj,k

qj,k
− θ

2πv

∣∣∣∣ < C2

q2j,k
.

See Theorem 188 in [22]. This implies that

C1

mj,k
< |〈

mj,kθ

2πv
〉| < C2

mj,k
.
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We have

ζ
nj,k

j,k − 1

ζ
mj,k

j,k − 1
=

−1 + rn cosnθ + irn sinnθ
−1 + rm cosmθ + irm sin θ

=
−nt+ i2πv〈 nθ

2πv 〉 +O(m−2)

−mt+ i2πv〈 mθ
2πv 〉 +O(m−2)

=
−
√

−n
m 〈 mθ

2πv 〉〈
nθ
2πv 〉 + i〈 nθ

2πv 〉 +O(m−2)

−
√

−m
n 〈 mθ

2πv 〉〈
nθ
2πv 〉 + i〈 mθ

2πv 〉 +O(m−2)

=
−
√

−n
m 〈 mθ

2πv 〉〈
nθ
2πv 〉 + i〈 nθ

2πv 〉

−
√

−m
n 〈 mθ

2πv 〉〈
nθ
2πv 〉 + i〈 mθ

2πv 〉
(1 +O(m−1))

= i

√
−n〈 nθ

2πv 〉
m〈 mθ

2πv 〉
(1 +O(m−1))

since 〈 nθ
2πv 〉 < 0 < 〈 mθ

2πv 〉, where we denote by m = mj,k, n = nj,k. Thus it is written as

ζ
nj,k

j,k − 1

ζ
mj,k

j,k − 1
= i

(
qj,k
qj

(−〈 qj,kθ
2πv 〉)

〈 qjθ
2πv 〉

)(−1)j/2

(1 +O(q−1
j )).

By using the continued fractions, we have

qj,k/qj = [k, aj , aj−1, . . . , a1],

−〈
qj,kθ

2πv
〉/〈 qjθ

2πv
〉 = [aj+1 − k, aj+2, aj+3, . . . ]

for j ≥ 1, 0 ≤ k ≤ aj+1. As j → +∞, they tend to the periodic sequence of continued fractions

[k, bs, . . . , b1, bd, . . . , bs+1] and [bs+1 − k, bs+2, . . . , bd, b1, . . . , bs+1].

However, we have

[k, bs, . . . , b1, bd, . . . , bs+1] · [bs+1 − k, bs+2, . . . , bd, b1, . . . , bs+1]
= (k − ω′

s+1)(−k + ωs+1)
= −ψs+1(k)

for 0 ≤ s < d, 0 < k ≤ bs+1. This completes the proof.

Figure 3.6 shows a quadrilateral Voronoi tiling generated by ζ = (0.9989 · · · )eiθ, θ = 2π ·
(1 +

√
3)/2, with an opposed parastichy pair {41, 71}. Note that (1 +

√
3)/2 = [1, 2] is a purely

periodic continued fraction expansion. The defining polynomial of ω1 = [2, 1] = 1 +
√

3 is
ψ1(x) = x2 − 2x − 2, and the defining polynomial of ω2 = [1, 2] = (1 +

√
3)/2 is ψ1(x) =

x2 − x − 1/2. We have (−ψ1(1))1/2 =
√

3, (−ψ1(2))1/2 =
√

2 and (−ψ2(1))−1/2 =
√

2, and
so Ω(θ = (1 +

√
3)/2, v = 1) = {i

√
2, i

√
3}. This implies that the limit set of the shapes of

quadrilateral tiles, as r → 1, is the rectangles whose aspect ratios are
√

3 and
√

2. The opposed
parastichy pair {41, 71} in Figure 3.6 corresponds to the pair of convergents p6/q6 = 56/41 <
θ/2π < p6,1/q6,1 = 97/71, and r = 0.998921 is a root of the polynomial ψm,n,θ(r) for {m,n} =
{41, 71}. The ratio (ζ71

6,1 − 1)/(ζ41
6,1 − 1) = 0.102397 + 1.70098i is close to i

√
3.

Corollary 3.19. If the coefficients aj = 1 of the continued fraction expansion of θ/2πv for
sufficiently large j, then Ω(θ, v) = {i}.
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Figure 3.7: A quadrilateral Voronoi spiral tiling generated by (0.9994 · · · ) exp(2πi · τ), τ = 1+
√

5
2 ,

with an opposed parastichy pair {34, 55}. (a) Global view around the origin. (b) Local view
around the tile T0. The quadrilateral tiles are close to the squares.

Proof. The golden section τ = [1, 1, . . . ] = [1, 1, 1] is a root of a quadratic polynomial ψ(x) =
x2 − x− 1, and we have −ψ(1) = 1.

Figure 3.7 shows a quadrilateral Voronoi tiling generated by ζ = (0.9994 · · · )e2πiτ , τ = 1+
√

5
2 ,

with an opposed parastichy pair {34, 55}. The tiles are close to the squares.
Figure 3.8 shows the parastichy transition of Voronoi spiral tilings with the fixed divergence

angle θ = 2π(
√

2 + 1), from a hexagonal tiling with opposed parastichy pairs {5, 2}, {5, 7},
through a quadrilateral tiling with an opposed parastichy pair {5, 7}, to a hexagonal tiling with
opposed parastichy pairs {5, 7}, {5, 12}. The limit set is given by Ω(θ = 2π(

√
2 + 1), v = 1) =

{i, i
√

2, i/
√

2}.
Figure 3.9 shows the parastichy transition of Voronoi spiral multiple tilings of multiplicity

v = 2, with the fixed divergence angle θ = 2π(τ − 1), from a hexagonal tiling with opposed
parastichy pairs {10, 13}, {13, 3}, through a quadrilateral tiling with an opposed parastichy pair
{13, 3}, to a hexagonal tiling with opposed parastichy pairs {13, 3}, {13, 16}. The limit set is
given by Ω(θ = 2π(τ − 1), v = 2) = {i, i

√
2, i/

√
2, i

√
3, i/

√
3}.
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Figure 3.8: Voronoi spiral tilings generated by ζ = reiθ with the fixed divergence angle θ =
2π(

√
2 + 1),

√
2 + 1 is the silver mean. (a) r = 0.9, hexagonal tiling with opposed parastichy

pairs {5, 2}, {5, 7}. (b) r = 0.90974, quadrilateral tiling with an opposed parastichy pair {5, 7}.
(c) r = 0.94, hexagonal tiling with opposed parastichy pairs {5, 7}, {5, 12}. (d) r = 0.96286,
quadrilateral tiling with an opposed parastichy pair {5, 12}.
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Figure 3.9: Voronoi spiral multiple tilings of multiplicity v = 2, which is generated by ζ = reiθ ∈
M2 with the fixed divergence angle θ = 2π(τ − 1), τ = 1+

√
5

2 . (a) r = 0.9, hexagonal tiling with
opposed parastichy pairs {10, 13}, {13, 3}. (b) r = 0.92559, quadrilateral tiling with an opposed
parastichy pair {13, 3}. (c) r = 0.96, hexagonal tiling with opposed parastichy pairs {13, 3},
{13, 16}. (d) r = 0.97238, quadrilateral tiling with an opposed parastichy pair {13, 16}.
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Part III

Triangular spiral tilings
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Chapter 4

Triangular spiral tilings

4.1 Quadrilateral spiral multiple tilings

In this section, we define a spiral multiple tiling as a tiling of a covering space of the punctured
plane C∗ := C\{0}.

Let Cv := C/2πviZ be a cylinder, where v 6= 0 is an integer. By the exponential function
exp : Cv → C∗ which maps w + 2πviZ to z = ew, Cv is a covering space of C∗, with degree v.
The metric on Cv is written by the Euclidean metric on C∗, ds2 = dzdz = e2Re(w)dwdw.

Definition 4.1. Let T ′ be a tiling of Cv. Then exp(T ′) = {exp(T ′)}T ′∈T ′ is called a multiple
tiling of C∗ of multiplicity |v|. Let Λ be an additive subgroup of Cv. We say that T ′ admits a
transitive action by Λ if

(i) for each T ′ ∈ T ′ and η ∈ Λ, we have T ′ + η ∈ T ′, and

(ii) for any pair T ′
1, T

′
2 ∈ T ′, there exists η ∈ Λ such that T ′

2 = T ′
1 + η.

If T ′ admits a transitive action by an additive group ξZ which is generated by a single element
ξ ∈ Cv, then T = exp(T ′) is called a spiral multiple tiling of multiplicity |v|.

Let ζ = reiθ ∈ D\R with 0 < r < 1, and consider the spiral sequence S = {ζj}j∈Z of C∗, which
is generated by a single element ζ. In the phyllotaxis theory, 1/r is called the plastochrone ratio
and θ = Arg(ζ) is called the divergence angle, where −π < Arg(z) ≤ π denotes the principal argu-
ment of z ∈ C∗. Let m,n > 0 be relatively prime integers. Suppose that T0 := �(1, ζm, ζm+n, ζn)
is a quadrilateral of C∗ in this order of vertices. Let

ξm := m log(r) + i
(
mθ − 2π[[

mθ

2π
]]
)

∈ log(ζm),

ξn := n log(r) + i
(
nθ − 2π[[

nθ

2π
]]
)

∈ log(ζn),

where [[x]] denotes an integer which is the nearest to x ∈ R such that −1
2 < 〈x〉 := x − [[x]] ≤ 1

2 .
Let a, b be integers such that mb− na = 1. Let

ξ := bξm − aξn = log(r) + i(θ + 2π`) ∈ log(ζ), ` = a[[
nθ

2π
]] − b[[

mθ

2π
]],

and
v := m[[

nθ

2π
]] − n[[

nθ

2π
]] =

nArg(ζm) −mArg(ζn)
2π

. (4.1.1)

Theorem 4.2. Let ζ = reiθ ∈ D\R. Let m,n > 0 be relatively prime integers, and suppose that
ζm, ζn 6∈ R−. If T0 := �(1, ζm, ζm+n, ζn) is a quadrilateral in C∗ in this order of vertices, then

T = {Tj := �(ζj , ζj+m, ζj+m+n, ζj+n)}j∈Z (4.1.2)

is a spiral multiple tiling of multiplicity |v|, where v is given by (4.1.1).
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Figure 4.1: Quadrilateral spiral tilings with the divergence angle θ = 2πτ , where τ = 1+
√

5
2 is

the golden section. Each j ∈ Z indicates the position of the complex coordinate ζj ∈ S. (a)
r = 0.97 and an opposed parastichy pair is {13, 8}. (b) r = 0.99 and an opposed parastichy pair
is {13, 21}.
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Figure 4.2: Quadrilateral spiral tilings with the divergence angle θ = 2π · 5+
√

5
10 . (a) r = 0.96 and

an opposed parastichy pair is {7, 11}. (b) r = 0.98 and an opposed parastichy pair is {18, 11}.

Proof. Since the complex logarithmic function log is a multiple-valued function, log(T0) has |v|
components in Cv. Let T ′

0 be a component of log(T0) which has 0, ξm, ξm + ξn and ξn on its
boundary. In Cv, we have nξm −mξn ≡ 0, mξ ≡ ξm, nξ ≡ ξn and ξmZ + ξnZ ≡ ξZ mod 2πviZ.
Let T ′ := {T ′

0 + k1ξm + k2ξn}k1,k2∈Z = {T ′
0 + kξ}k∈Z. Then T ′ is a tiling of Cv which admits a

transitive action by ξZ. Hence we have T = exp(T ′).

We call (4.1.2) the quadrilateral spiral multiple tiling of multiplicity |v|. In the quadrilateral
spiral multiple tiling T , we say that two quadrilateral tiles T1, T2 ⊂ T are adjacent if ](T1∩T2) > 1,
that is, T1 ∩ T2 is a line segment with positive length, where ](T ) denotes the potency of T ⊂ T .
That is, we do not say that T1 and T2 are not adjacent if T1 ∩ T2 is a point or the empty set.
For all j ∈ Z, tiles Tj of a quadrilateral spiral multiple tiling T is adjacent to four tiles Tj±m

and Tj±n. In the phyllotaxis theory, the pair (m,n) of (4.1.2) is called the parastichy pair if T0

is adjacent to Tm and Tn. Moreover, the parastichy pair {m,n} is called an opposed parastichy
pair if Arg(ζm)Arg(ζn) < 0 and a non-opposed parastichy pair if Arg(ζm)Arg(ζn) > 0.

Figure 4.1 shows two examples of quadrilateral spiral tilings with the divergence angle θ = 2πτ ,
where τ = 1+

√
5

2 is the golden section. The opposed parastichy pairs {13, 8} and {13, 21} are pairs
of successive terms of the Fibonacci sequence. Figure 4.2 shows two examples of quadrilateral
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Figure 4.3: A quadrilateral spiral tiling with a non-opposed parastichy pair {13, 8} generated by
ζ = 0.97e2π(1.627)i.

spiral tilings with the divergence angle θ = 2π · 5+
√

5
10 . The opposed parastichy pairs {7, 11} and

{18, 11} are pairs of successive terms of the Lucas sequence.

4.2 Continued fractions and quadrilateral spiral multiple tilings with opposed
parastichy pairs

In the phyllotaxis theory, it is shown that the relationship between the opposed parastichy pair
{m,n} and the continued fraction approximation of θ/2π. It has a natural extension to spiral
multiple tilings as shown below.

Theorem 4.3. Let ζ = reiθ ∈ D\R. Let m,n > 0 be relatively prime integers. Suppose that
ζm, ζn 6∈ R−. If (4.1.2) is a spiral multiple tiling and (m,n) is an opposed parastichy pair, then
a/m, b/n are principal or intermediate convergents of x = (θ/2π + `)/v, at least one of which is
principal.

Proof. We may suppose that Arg(ζn) < 0 < Arg(ζm) without loss of generality. In the setting of
the theorem 4.2, we have ` = a[[nθ/2π]] − b[[mθ/2π]] and v = m[[nθ/2π]] − n[[mθ/2π]]. Thus

n

(
θ

2π
+ `

)
− bv =

nθ

2π
− [[

nθ

2π
]] < 0 <

mθ

2π
− [[

mθ

2π
]] = m

(
θ

2π
+ `

)
− av,

and hence
a

m
<

1
v

(
θ

2π
+ `

)
<
b

n
, mb− na = 1. (4.2.1)

Thus a/m, b/n are principal or intermediate convergents of x = (θ/2π + `)/v, at least one of
which is principal.

Figure 4.3 shows an example of a quadrilateral spiral tiling with an non-opposed parastichy
pair {13, 8}, where the divergence angle is 2π(1.627). This pair {13, 8} is not a pair of denomi-
nators of two successive terms of convergents of 1.627 which satisfy the condition (4.2.1).

4.3 Triangular spiral multiple tilings

Let m,n > 0 be relatively prime integers. Let ζ = reiθ ∈ D\R with 0 < r < 1, and suppose
that ζm, ζn 6∈ R−. If three of the four points 1, ζm, ζm+n and ζn lie on a same line, then (4.1.2)
becomes a triangular spiral multiple tiling. In this section, we consider triangular spiral multiple
tilings given as a special case of quadrilateral spiral multiple tilings.

57



(a)

-3

-1

0

1

2

3

4

5

6

7

8
9

10

11

12

13

14

15

16

17

18

19

20

(b) -20
-18

-16

-12

-10

-9

-7

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

89

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25
26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42
43

44

45

46

47

48

49

50

-8

-14
-6

Figure 4.4: Phyllotactic triangular spiral tilings with the divergence angle θ = 2πτ . (a) r =
0.9328 · · · and the opposed parastichy pair is {5, 3}. (b) r = 0.9849 · · · and the opposed parastichy
pair is {5, 8}.

Let

φm,k(z) =
zk − 1
zm − 1

(4.3.1)

be a rational function of one complex variable.

Lemma 4.4. Let m > n > 0 be relatively prime integers. Let ζ = reiθ ∈ C\R, and suppose that
ζm 6= 1. Then the following conditions are mutually equivalent.

(i) The three points ζm, ζm+n and ζn lie on a same line.

(ii) The four points 0, 1, ζm and ζn lie on a same circle.

(iii) fm,n(r, θ) = 0, where

fm,n(r, θ) := rm sinnθ − rn sinmθ + sin(m− n)θ. (4.3.2)

(iv) φm,m−n(ζ) ∈ R.

Proof. (i) ⇔ (iv): We have ζm − ζn = t(ζm+n − ζn) holds for some t ∈ R.
(ii) ⇔ (iv): The cross ratio of 1, ζm, ζm+n and ζn is given as φm,m−n(ζ).
(iii) ⇔ (iv): We have Im(φm,m−n(ζ)) = − |ζm−n|

|ζm−1|2 fm,n(r, θ).

Figure 4.4 shows two examples of triangular spiral tilings with the divergence angle θ = 2πτ ,
which are called Fibonacci Tornado. In Figure 4.4 (a), an opposed parastichy pair is {5, 3}. In
Figure 4.4 (b), an opposed parastichy pair is {5, 8}. See [36, Fig.1] for a biological triangular
spiral tiling by Suaeda vera. Figure 4.5 shows an origami development for the triangular spiral
tiling of Figure 4.4 (a).

4.3.1 Triangles which admit spiral multiple tilings with opposed parastichy pairs

In this section, we consider shapes of triangles which admit spiral multiple tilings with opposed
parastichy pairs.

Let m,n > 0 be relatively prime integers. Let I = (−π, π] be a half-open interval, and consider
an injective map

ιm,n : I → I2, ιm,n(θ) =
(

2π〈mθ
2π

〉, 2π〈nθ
2π

〉
)
,
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Figure 4.5: An origami for the phyllotactic triangular spiral tiling of Figure 4.4 (a). (a) An
origami sheet. Solid lines are mountain fold and dashed lines are valley fold. (b) Side view from
right, before squash. (c) Side view from right, after squashed. (d) Top-down view.

where 〈x〉 ∈ (−1
2 ,

1
2 ] denotes a fractional part of x ∈ R such that [[x]] := x− 〈x〉 ∈ Z. The image

of ιm,n is a stripe in the square I2 written by

ιm,n(I) =
∪

|v|<(m+n)/2

{(θ1, θ2) ∈ I2 : nθ1 −mθ2 = 2πv}.

Let ∆ = ∆+ ∪ ∆−,

∆+ = {(θ1, θ2) ∈ I2 : 0 < θ1 < θ2 + π < π},
∆− = {(θ1, θ2) ∈ I2 : 0 < θ2 < θ1 + π < π}.

Then ιm,n(I) ∩ ∆ is a union of line segments written by

ιm,n(I) ∩ ∆ =
∪

0<|v|<max(m,n)
2

`m,n,v, `m,n,v = {(θ1, θ2) ∈ ∆ : nθ1 −mθ2 = 2πv}.

Theorem 4.5. Let m > n > 0 be relatively prime integers. Let v > 0 be an integer. The
followings are mutually equivalent.

(i) There exists ζ ∈ D\R such that

T = {Tj = �(ζj , ζj+m, ζj+m+n, ζj+n) = 4(ζj , ζj+m, ζj+n)}j∈Z (4.3.3)

is a triangular spiral multiple tiling of multiplicity v with an opposed parastichy pair {m,n},
where

|∠(ζj+m, ζj+n, ζj)| = α and |∠(ζj , ζj+m, ζj+n)| = β (j ∈ Z),

(ii) nα+mβ = 2πv.
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Figure 4.6: The set ι5,3(I)∩ (∆+ ∪∆−) consisted of four solid lines, denotes the set of the pair of
angles ι5,3(θ) = (2π〈 5θ

2π 〉, 2π〈
3θ
2π 〉) of triangles that admit spiral multiple tilings with an opposed

parastichy pair {5, 3}. The dotted lines are the lines 3θ1 − 5θ2 = 2πv, −4 ≤ v ≤ 4. For each
endpoint ι5,3(θ) of a solid line, θ/2π is a rational number as shown in this figure. The mark F
denotes the point ι5,3(2πτ) which produce the triangular spiral tiling of Figure 4.4 (a).

(iii) (α,−β) ∈ `m,n,v,

Proof. (i) ⇒ (ii): By taking complex conjugates if necessary, we may suppose that Arg(ζn) < 0 <
Arg(ζm). Since the quadrilateral �(1, ζm, ζm+n, ζn) is a quadrilateral in this order of vertices,
the three points ζm, ζm+n and ζn lie on a same line. By Lemma 4.4, the four points 0, 1, ζm and
ζn lie on a same circle. Thus we have Arg(ζm) = α, Arg(ζn) = −β, and hence nα+mβ = 2πv.
(ii) ⇔ (iii): Obvious.
(iii) ⇒ (i): We assume that (α,−β) ∈ `m,n,v. Let θ = ι−1

m,n(α,−β) ∈ Im,n,v. Then we have
sinmθ > 0, sin (−nθ) > 0 and sin(m− n)θ > 0, and so we have

fm,n,θ(0) = sin(m− n)θ > 0,
fm,n,θ(1) = (cosnθ − 1) sinmθ + (1 − cosmθ) sinnθ < 0,
dfm,n,θ(r)/dr = (mrm sinnθ − nrn sinmθ) < 0,

where note that fm,n(r, θ) is rewritten by fm,n,θ(r) because θ is given. The Intermediate Value
Theorem implies that the equation fm,n,θ(r) = 0 has a unique root 0 < r < 1. Let ζ = reiθ.
Then, since fm,n,θ(r) = 0, the three points ζm, ζm+n and ζn lie on a same line by Lemma 4.4.
Since Arg(ζn) < 0 < Arg(ζm), we have Arg(ζn) < Arg(ζm+n) < Arg(ζm). So ζm+n lies on the
line segment `(ζm, ζn). Thus (4.3.3) is a spiral multiple tiling of multiplicity v with an opposed
parastichy pair {m,n}. By Lemma 4.4 again, the four points 0, 1, ζm and ζn lie on a same circle,
and so we have ∠(ζm, ζn, 1) = ∠(ζm, 0, 1) = α and ∠(1, ζm, ζn) = ∠(1, 0, ζn) = β.

The set ι5,3(I) ∩ ∆+ in Figure 4.6 consisted of two solid lines, denotes the set of the pairs of
angles (α,−β) in Theorem 4.5. The dotted lines are the lines 3θ1 − 5θ2 = 2πv, −4 ≤ v ≤ 4. For
each endpoint ι5,3(θ) of a solid line, θ/2π is a rational number as shown in this figure. The mark
F denotes the point ι5,3(2πτ) which produce the triangular spiral tiling of Figure 4.4 (a).

Let R = {(m,n) ∈ Z2 : m > n > 0 are relatively prime}. Theorem 4.5 implies that for each
v > 0, Lv :=

∪
(m,n)∈R `m,n,v ⊂ ∆+ is the set of shapes of triangles which admit spiral multiple

tilings of multiplicity v with an opposed parastichy pair {m,n}.

Definition 4.6. A set X is called a nowhere dense subset of a topological space if the interior of
the closure of X is the empty set.
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Figure 4.7: A spiral tiling by equilateral triangles. Opposed parastichy pair {m,n} = {5, 1}.
θ = −π/3, r = 0.7548 · · · . See Figures 4.8 for its origami development. The equilateral triangle
does not admit a spiral tiling with a non-opposed parastichy pair.

Theorem 4.7. For each v > 0, Lv is a nowhere dense subset of ∆+. The union L :=
∪

v>0 Lv

is dense in ∆+.

Proof. Fix v > 0, and let K ⊂ ∆+ be a compact set. Since `m,n,v ⊂ [0, v/n] × [−v/m, 0], K
intersects `m,n,v for only finitely many (m,n) ∈ R. Hence Lv is nowhere dense. The union
L =

∪
v>0 Lv =

∪
(m,n)∈R ιm,n(I) ∩ ∆+ is a union of stripes ιm,n(I). Thus it is a dense subset of

∆+.

4.3.2 Examples of triangles which admit spiral multiple tilings with opposed paras-
tichy pairs

By Theorem 4.5, we obtain the following examples of triangular spiral multiple tilings with
opposed parastichy pairs.

(i) A spiral tiling by equilateral triangles: The equilateral triangle generates a spiral tiling
with an opposed parastichy pair {5, 1}, of Figure 4.7, since π

3 + 5 · π
3 = 2π. See figure

4.8 for its origami development. The generator ζ = reiθ is determined by the equation
ι5,1(θ) = (π

3 ,−
π
3 ) and r5 + r − 1 = 0, thus θ = −π

3 and r = 0.7548 · · · .

(ii) A spiral multiple tiling by right triangles with angles 30◦, 60◦ and 90◦: The right triangle
with angles 30◦ and 60◦ has a spiral multiple tiling of multiplicity v = 2 with an opposed
parastichy pair {11, 2}, since 11 · π

3 + 2 · π
6 = 4π. See Figure 4.9. The generator ζ = reiθ

is given by the equation ι11,2(θ) = (π
6 ,−

π
3 ) and

√
3r11 + r2 − 2 = 0, thus θ = −π/6 and

r = 0.9581 · · · . Figure 4.10(a) is its origami sheet, but the top-down view in Figure 4.10
(b) is apparently different from the multiple tiling in Figure 4.9. A problem is that the
paper sheet is not penetrable. It is not possible to actualize a double-covering space of the
punctured plane C∗.

4.3.3 Generators of triangular spiral multiple tilings with opposed parastichy pairs

Let m > n > 0 be relatively prime integers. In this section, we consider a set of generators of
triangular spiral multiple tilings for each opposed parastichy pair {m,n}.
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Figure 4.8: Two paper-folding sheets which build the same origami of Figure 4.7. (a) An origami
sheet for beginners, very easy. (b) A sheet for experts, quite difficult. (c) Top-down view.

Lemma 4.8. Let m > n > 0 be relatively prime integers. Let ζ ∈ C \ R, and suppose that
ζm, ζn 6∈ R. The followings are mutually equivalent.

(i) |ζ| < 1, and T in (4.3.3) is a triangular spiral multiple tiling with an opposed parastichy
pair {m,n}.

(ii) ζ ∈ Pm,n where Pm,n := {ζ ∈ C\R : φm,m−n(ζ) > 1}.

(iii) φm,n(1/ζ) < 0.

Proof. (i) ⇒ (ii): We assume that ζm+n lies on the line segment `(ζm, ζn). Then we have
(ζm − ζn) = t(ζm+n − ζn) for some t > 1. Thus φm,m−n(ζ) > 1 holds.
(ii) ⇒ (i): We assume that φm,m−n(ζ) > 1. Then (ζm − ζn) = t(ζm+n − ζn) holds for some
t > 1. This implies that ζm+n lies on the line segment `(ζm, ζn). Thus the quadrilateral
�(1, ζm, ζm+n, ζn) is a triangle with corners 1, ζm and ζn. Since ζm+n lies on the line seg-
ment `(ζm, ζn), we have |ζm+n| < max(|ζm|, |ζn|) on the line segment `(ζm, ζn). Hence |ζ| < 1.
Since ζm+n lies in an angular region ∠(ζn, 1, ζm), we obtain Arg(ζm)Arg(ζn) < 0.
(ii) ⇔ (iii): This follows from the relation φm,n(1/ζ) + φm,m−n(ζ) = 1.

Lemma 4.9. Let m > n > 0 be relatively prime integers. Then we have Pm,n =
∪

0<|v|<m/2 Pm,n,v,
where

Pm,n,v := {ζ ∈ Pm,n : nArg(ζm) −mArg(ζn) = 2πv}.

For each v ∈ Z with 0 < |v| < m/2, there exists a real analytic function r : Im,n,v → R such that
the mapping

ϕm,n,v : Im,n,v → Pm,n,v, ϕm,n,v(θ) = r(θ)eiθ,

is a homeomorphism.
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Figure 4.9: Spiral multiple tiling by right triangles with angles 30◦ and 60◦, with multiplicity
v = 2, opposed parastichy pair {m,n} = {11, 2}, θ = −π/6, r = 0.9581 · · · .
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Figure 4.10: An origami development for the spiral multiple tiling of Figure 4.9. (a) An origami
sheet. (b) Top-down view.
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Figure 4.11: A real algebraic curve Im(φ5,2(ζ)) = 0. A rational number x on the unit circle denotes
e2iπx. The marks N, � and � indicate the points ζ, where φ5,2(ζ) = 0, 1 and ∞ respectively.

Proof. We have already shown that r(θ) is uniquely determined as a root of the equation fm,n,θ(r) =
0, in the proof of Theorem 4.5, where note that fm,n(r, θ) is rewritten by fm,n,θ(r) = 0 because
θ is given.

Figure 4.11 shows the real algebraic curve Im(φ5,2(ζ)) = 0. Inside D\R, it consists of four
arcs P5,3,v, v = ±1,±2.

Lemma 4.10. Let m > n > 0 be relatively prime integers and 0 < |v| < m/2. Let a, b be integers
such that 0 < b < a < m and mb − na = 1. The interval Im,n,v has an endpoint 2π〈 a

m〉. The
other endpoint of Im,n,v is given as follows: 2π〈 bv

n 〉 if 0 < |v| < n
2 ; π if v = n

2 ; −π if v = −n
2 ;

2π〈 (a−b)v+ 1
2

m−n 〉 if n
2 < v < m

2 ; and 2π〈 (a−b)v− 1
2

m−n 〉 if −m
2 < v < −n

2 .
The arc Pm,n,v has an endpoint limθ→2π〈av

m
〉 ϕm,n,v(θ) = e2iπav/m. The other endpoint is given

as follows: For 0 < |v| < n/2, limθ→2π〈 bv
n
〉 ϕm,n,v(θ) = e2iπbv/n. For |v| = n/2, limθ→π ϕm,n,v(θ) =

−r̃, where r̃ is a unique positive root of the equation

m− n = mr̃n + nr̃m. (4.3.4)

For n/2 < |v| < m/2, lim
θ→2π〈 (a−b)v± 1

2
m−n

〉
ϕm,n,v(θ) = 0.

Proof. First, we see that ιm,n(2π〈av
m 〉) = (0,−2πv

m ). Second, we see the other endpoint as fol-

lows. If 0 < |v| < n
2 , we have ιm,n(2π〈 bv

n 〉) = (2πv
n , 0). If n

2 < v < m
2 , ιm,n(2π〈 (a−b)v+ 1

2
m−n 〉) =

(m−2v
m−n π,

n−2v
m−nπ) lies on the boundary line θ1−θ2 = π of ∆+. If −m

2 < v < −n
2 , ιm,n(2π〈 (a−b)v− 1

2
m−n 〉) =

(−m−2v
m−n π, −n−2v

m−n π) lies on the boundary line θ2 − θ1 = π of ∆−. For each candidate θ of the end-
point of Im,n,v, we confirm that ιm,n(θ) lies on the line nθ1 −mθ2 = 2πv.

Finally, we prove the latter half of Lemma 4.10. Note that fm,n(r, θ) is rewritten by fm,n,θ(r) =
0 because θ is given. As θ → 2π〈av

m 〉 or θ → 2π〈 bv
n 〉, we have sinmθ → 0 or sinnθ → 0 respectively,

so the positive root r of the equation fm,n,θ(r) = 0 tends to 1. As θ → 2π〈 (a−b)v± 1
2

m−n 〉, we have
sin(m− n)θ → 0, so r → 0. As θ → π, we have all sinmθ, sinnθ, sin(m− n)θ → 0, so the limit r̃
of r is a root of (4.3.4).

Figure 4.12 shows the stripe ι7,4(I)∩ (∆+ ∪∆−) and the real algebraic curve Im(φ7,3(ζ)) = 0.
At the endpoints of each arc P7,4,v, v = ±1,±2,±3, we have φ7,3(ζ) = 1,∞. This example shows
the three types of intervals in Lemma 4.10. The interval I7,4,1 = 2π(−2/7,−1/4) corresponds to
the line segment `7,4,1 with endpoints on the θj-axis, j = 1, 2, and the arc P7,4,1 with endpoints
on the unit circle. For I7,4,2 = 2π(3/7, 1/2), the line segment `7,4,2 has an endpoint (π, 0) on
the corner of I2, and the arc P7,4,2 has an endpoint −0.7644 on the real axis which is a critical
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Figure 4.12: (a) The stripe ι7,4(I)∩ (∆+ ∪∆−) consists of six solid lines. (b) The six arcs P7,4,v,
v = ±1,±2,±3, connect � and � on the real algebraic curve Im(φ7,3(ζ)) = 0.

point of the function φ7,3(ζ), where r̃ = 0.7644 is a root of the equation 3 = 7r̃4 + 4r̃7. For
I7,4,3 = 2π(1/7, 1/6), the line segment `7,4,3 has an endpoint on the line θ1 − θ2 = π, and the arc
P7,4,3 has an endpoint at the origin. 1, 3, 4, 7, 11, 18, . . . is the Lucas sequence.

In Theorem 4.3, a/m and b/n in (4.2.1) are successive convergents of x = 1
v ( θ

2π + `). The next
(principal or intermediate) convergent is given as the Farey sum (a+ b)/(m+n). Thus we obtain

Im,n,v \
{

2π〈 a+ b

m+ n
〉
}

⊂ Im+n,n,v ∪ Im+n,m,v.

The following Lemma shows that the plastochrone ratio 1/|ζ| decreases in the parastichy transition
{m,n} → {m+n, n} or {m+n,m}. In particular, the arcs Pm+n,n,v and Pm+n,m,v do not intersect
Pm,n,v in D.

Lemma 4.11. Let θ ∈ Im,n,v, r1eiθ ∈ Pm,n,v and r2eiθ ∈ Pm+n,n,v ∪ Pm+n,m,v. Then r1 < r2.

Proof. Without loss of generality, we may suppose that v > 0 and r2eiθ ∈ Pm+n,n,v. By the
equation fm,n,θ(r) = 0, we have

(rm
1 − cosmθ) sinnθ = (rn

1 − cosnθ) sinmθ. (4.3.5)

Let fm+n,n,θ(r) = rm+n sinnθ− rn sin(m+ n)θ+ sinmθ. It is a decreasing function of r, because
sinnθ,− sin(m+ n)θ < 0. We have fm+n,n,θ(r2) = 0 by fm,n,θ(r) = 0 and

f(r1) = rn
1 (rm

1 − cosmθ) sinnθ + (1 − rn
1 cosnθ) sinmθ

= (r2n
1 − 2rn

1 cosnθ + 1) sinmθ > 0

by (4.3.5). Hence r1 < r2.

Let Pv :=
∪

(m,n)∈R Pm,n,v for v 6= 0. Lemma 4.11 implies that for each v 6= 0, Pv is not a
dense subset of D. However, we have the following result.

Theorem 4.12. The union P :=
∪

v 6=0 Pv is a dense subset of D.

Proof. Denote by δ(θ) := {reiθ : 0 < r < 1} a radial line segment of D∗ = D \ {0}. We show that
a radial line segment δ(2π〈 bv

n 〉) is contained in the closure of Pv whenever 1 ≤ b < n < 2v.
We may assume that n, b are relatively prime. Let 0 ≤ a0 < m0 < n be integers such that

m0b − na0 = 1. Let mj = nj + m0 and aj = bj + a0 for j > 0. Then we have mjb − naj = 1,
and aj/mj → b/n as j → +∞. For a sufficiently large j, we have n

2 < v <
mj

2 , so the curve
Pmj ,n,v connects the mj-th root of unity e2πiajv/mj with the origin, by Lemma 4.10. As j → +∞,
the length of the interval Imj ,n,v tends to 0. Thus the curves Pmj ,n,v accumulate to δ(2π〈 bv

n 〉) as
j → +∞.
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Figure 4.13: The set P1 ∪ P−1 of generators for triangular spiral tilings with opposed parastichy
pairs. The arcs Pm,n,1 and Pm,n,−1 are denoted by {m,n}. Compare this figure with a diagram
on the topology of knot complements [23, Fig.4]. The arcs Pm,1,±1 accumulate to the interval
[0, 1] on the real axis as m→ ∞. The arcs P2k+1,2,±1 tending to the boundary point −1 (marked
1
2) as k → ∞.

Figure 4.13 indicates that the arcs Pm,1,±1 accumulate to the unit interval [0, 1] = δ(0) as
m→ ∞.

4.3.4 Generators of triangular spiral multiple tilings with non-opposed parastichy
pairs

Let m,n > 0 be relatively prime integers. In this section, we consider a set of generators of
triangular spiral multiple tilings for each non-opposed parastichy pair {m,n}.

Theorem 4.13. Let m,n > 0 be relatively prime integers. Let v > 0 be an integer. Then the
followings are mutually equivalent.

(i) There exists ζ ∈ D\R such that

T = {Tj = �(ζj , ζj+m, ζj+m+n, ζj+n) = 4(ζj , ζj+m, ζj+m+n)}j∈Z (4.3.6)

is a triangular spiral multiple tiling of multiplicity v with a non-opposed parastichy pair
{m,n}, where

|∠(ζj+m, ζj+m+n, ζj)| = α and |∠(ζj+m+n, ζj , ζj+m)| = β

for all j ∈ Z.

(ii) nα−mβ = 2πv and there exists 0 < r < 1 such that

sinβ = rm sin(α+ β) − rm+n sinα. (4.3.7)

Proof. (i) ⇒ (ii): By the assumption (i), the quadrilateral �(1, ζm, ζm+n, ζn) is the triangle
4(1, ζm, ζm+n). So ζn lies on the line segment `(1, ζm+n). Then we have ζn − 1 = t(ζm+n − 1)
for any 0 < t < 1, and hence 0 < φm+n,n(ζ) < 1. By Lemma 4.4, the four points 0, 1, ζm and
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ζm+n lie on a same circle. Thus we have |∠(ζm, ζm+n, 1)| = Arg(ζm) = α and |∠(ζm+n, 1, ζm)| =
Arg(ζn) = β for any j ∈ Z, and hence nα−mβ = 2πv. Since 0 < φm+n,n(ζ) < 1, we have

Im(φm+n,n(ζ)) =
rn(−rm+n sinmθ − sinnθ + rm sin(m+ n)θ)

|ζm+n − 1|2
= 0,

and hence we obtain the equation (4.3.7).
(ii) ⇒ (i): Since (α, β) ∈ ιm,n(I), there exists a unique θ ∈ I such that ιm,n(θ) = (α, β). Let
ζ = reiθ. By Lemma 4.4, the four points 0, 1, ζm and ζm+n lie on a same circle, so we have
φm+n,n(ζ) ∈ R. |∠(ζj+m, ζj+m+n, ζj)| = Arg(ζm) = α and |∠(ζj+m+n, ζj , ζj+m)| = Arg(ζn) = β.
The three points Am+n,A2m+n and Am are collinear, so the three points An,Am+n and A0 are
also collinear. Since Arg(ζm),Arg(ζn) > 0, we have Arg(ζm+n) > Arg(ζn) > 0, so ζn lies on the
line segment `(1, ζm+n). Thus (4.3.6) is a triangular spiral multiple tiling with a non-opposed
parastichy pair {m,n}.

Lemma 4.14. Let m,n > 0 be relatively prime integers. Let ζ ∈ D \ R. Then the followings are
mutually equivalent.

(i) T = {Tj = �(ζj , ζj+m, ζj+m+n, ζj+n) = 4(ζj , ζj+m, ζj+m+n)}j∈Z is a triangular spiral
multiple tiling with a non-opposed parastichy pair {m,n}.

(ii) ζ ∈ Qm,n, where Qm,n := {ζ ∈ D \ R : 0 < φm+n,n(ζ) < 1}.

(iii) 0 < φm+n,m(1/ζ) < 1.

Proof. (i) ⇒ (ii): By the assumption (i), the quadrilateral �(1, ζm, ζm+n, ζn) is the triangle
4(1, ζm, ζm+n). So ζn lies on the line segment `(1, ζm+n), that is, we have ζn = tζm+n + 1 − t
for some 0 < t < 1, so we obtain 0 < φm+n,n(ζ) < 1.
(ii) ⇒ (i): If 0 < φm+n,n(ζ) < 1, then (ζn − 1) = t(ζm+n − 1) for some 0 < t < 1. This implies
that ζn lies on the line segment `(1, ζm+n). Thus the quadrilateral �(1, ζm, ζm+n, ζn) is the
triangle 4(1, ζm, ζm+n). Since the angular region ∠(ζn, 0, 1) is contained in the angular region
∠(ζm+n, 0, 1), we obtain Arg(ζm)Arg(ζn) > 0.
(ii) ⇔ (iii): This follows from φm+n,n(ζ) + φm+n,m(1/ζ) = 1.

We have Qm,n =
∪

0<|v|<n/2Qm,n,v, where

Qm,n,v := {ζ ∈ Qm,n : nArg(ζm) −mArg(ζn) = 2πv}.

We will give a parameterization of each arc Qm,n,v by r. Let ∆′ = ∆′
+ ∪ ∆′

−,

∆′
+ = {(θ1, θ2) ∈ I2 : θ1, θ2 > 0, θ1 + θ2 < π},

∆′
− = {(θ1, θ2) ∈ I2 : θ1, θ2 < 0, θ1 + θ2 > −π}.

Let
`′m,n,v = {(θ1, θ2) ∈ ∆′ : nθ1 −mθ2 = 2πv}

for 0 < |v| < n/2. Let a, b > 0 be integers such that mb − na = 1, 0 < a
m < b

n < 1. Then

the interval I ′m,n,v := ι−1
m,n(`′m,n,v) is written as I ′m,n,v = (2π〈 bv

n 〉, 2π〈 (a+b)v+ 1
2

m+n 〉) for 0 < v < n
2 ;

I ′m,n,v = (2π〈 (a+b)v− 1
2

m+n 〉, 2π〈 bv
n 〉) for −n

2 < v < 0.

Theorem 4.15. For each v ∈ Z with 0 < |v| < n
2 , there exists a real analytic function θm,n,v :

(0, 1) → I ′m,n,v such that the function ζ(r) = r exp(iθm,n,v(r)) is a homeomorphism of the unit
interval (0, 1) onto Qm,n,v. Moreover, we have

lim
r→0

θm,n,v(r) = lim
r→1

θm,n,v(r) = 2π〈bv
n
〉. (4.3.8)
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Proof. Suppose that v > 0 without loss of generality. For each v ∈ Z with 0 < v < n/2, we have

the interval I ′m,n,v = (2π〈 bv
n 〉, 2π〈 (a+b)v+ 1

2
m+n 〉). Fix 0 < r < 1. For θ = 2π〈 bv

n 〉, we have

Arg(φm+n,n(ζ)) = Arg(rn − 1) − Arg(ζm+n − 1)
= π − Arg(ζm+n − 1)
= π − π − Arg(1 − ζm+n)
= −Arg(1 − ζm+n) > 0;

For θ = 2π〈 (a+b)v+ 1
2

m+n 〉, we have

Arg(φm+n,n(ζ)) = Arg(ζn − 1) − Arg(−rm+n − 1)
= Arg(ζn − 1) − π − Arg(rm+n + 1)
= π + Arg(1 − ζn) − π

= Arg(1 − ζn) < 0.

The Intermediate Value Theorem implies that for each 0 < r < 1, there exists ζ = reiθ, θ ∈ I ′m,n,v

such that Arg(φm+n,n(ζ)) = 0, and hence φm+n,n(ζ) ∈ R. Since Arg(ζm+n) > Arg(ζn) > 0, we
have |ζn − 1| < |ζm+n − 1|, 0 < φm+n,n(ζ) < 1, and hence ζ ∈ Qm,n,v.

The uniqueness of θ ∈ I ′m,n,v shall follow if we show that

∂

∂θ
Arg(φm+n,n(ζ)) < 0 for ζ ∈ Qm,n,v,

or equivalently,
∂

∂θ
Im(φm+n,n(ζ)) < 0 for ζ ∈ Qm,n,v.

For z = r̂eiθ̂ ∈ D, let

ρ̂(r̂, θ̂) :=
r̂ sin θ̂

1 − r̂ cos θ̂
= tan ∠ZA0O,

where Z denotes the point with the complex coordinate z. Then we have

|1 − ζm+n|2

Re(1 − ζn)Re(1 − ζm+n)
Im(φm+n,n(ζ)) = ρ̂(rm+n, (m+ n)θ) − ρ̂(rn, nθ).

Let E = {z ∈ D : |z − 1
2 | <

1
2} = {z = r̂eiθ̂ : r̂ < cos θ̂} be a disk consisting of the points Z such

that cos ∠OZA0 < 0.

Lemma 4.16. ζn ∈ E if ζ ∈ Qm,n,v.

Proof. It is easy to see that for z ∈ C, there exists λ > 1 such that |λ(z − 1) + 1| < |z|, if and
only if z ∈ E.

Let λ = (ζm+n − 1)/(ζn − 1). Then we have λ > 1 and |ζm+n| = |λ(ζn − 1) + 1| < |ζn|. Thus
we obtain ζn ∈ E.

Lemma 4.17. ∂
∂θ Im(φm+n,n(ζ)) < 0, if ζ = reiθ ∈ Qm,n,v and ζm+n 6∈ E.

Proof. For z = r̂eiθ̂, we have ∂ρ̂

∂θ̂
(r̂, θ̂) = r̂(cos θ̂−r̂)

(1−r̂ cos θ̂)2
, so z ∈ E ⇔ ∂ρ̂

∂θ̂
> 0. Thus, if ζ = reiθ ∈ Qm,n,v

and ζm+n 6∈ E, we obtain

∂ρ̂

∂θ̂
(rm+n, (m+ n)θ) ≤ 0 <

∂ρ̂

∂θ̂
(rn, nθ),

and hence ∂
∂θ Im(φm,n(ζ)) < 0.
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Now suppose that ζ ∈ Qm,n,v and ζm+n ∈ E. For z = r̂eiθ̂ ∈ E, consider two coordinate
systems as follows.

ϕ1 : E → R2, ϕ1(z) = (r̂, θ̂) = (|z|, arg z),

ϕ2 : E → R2, ϕ2(z) = (r̂, ρ̂) = (r̂,
r̂ sin θ̂

1 − r̂ cos θ̂
), where (r̂, θ̂) = ϕ1(z).

The derivative of the coordinate changes are written as ∂r̂

∂r̂

∂r̂

∂θ̂
∂ρ̂

∂r̂

∂ρ̂

∂θ̂

 =

 1 0
sin θ̂

(1 − r̂ cos θ̂)2
r̂(cos θ̂ − r̂)

(1 − r̂ cos θ̂)2

 ,


∂r̂

∂r̂

∂r̂

∂ρ̂
∂θ̂

∂r̂

∂θ̂

∂ρ̂

 =

 1 0
− sin θ̂

r̂(cos θ̂ − r̂)

(1 − r̂ cos θ̂)2

r̂(cos θ̂ − r̂)

 .

Lemma 4.18. Let 0 < r1 < r2 < 1, 0 < ρ1 < ρ2 and suppose that (ri, ρj) ∈ ϕ2(E), i, j = 1, 2.
Then

∂θ̂

∂ρ̂
(r2, ρ2)

∂θ̂

∂ρ̂
(r1, ρ1) <

∂θ̂

∂ρ̂
(r2, ρ1)

∂θ̂

∂ρ̂
(r1, ρ2).

Proof. The ratio ∂θ̂
∂ρ̂(r2, ρ)/∂θ̂

∂ρ̂(r1, ρ) is a strictly decreasing function of ρ, since

∂

∂ρ̂
(log

∂θ̂

∂ρ̂
(r2, ρ̂) − log

∂θ̂

∂ρ̂
(r1, ρ̂))

=
∫ r2

r1

∂2

∂ρ̂∂r̂
log

∂θ̂

∂ρ̂
(r̂, ρ̂) dr̂

=
∫ r2

r1

(1 − r̂ cos θ̂)2(−2 + r̂ cos θ̂ + r̂2) sin θ̂

r̂2(r̂ − cos θ̂)4
dr̂ < 0.

Fix 0 < r < 1. Let ρm+n(θ) := ρ̂(rm+n, (m + n)θ), ρn(θ) := ρ̂(rn, nθ) for θ ∈ I ′m,n,v, and
consider their inverse functions θm+n(ρ), θn(ρ) respectively. Note that

d

dρ̂
θm+n(ρ̂) =

1
m+ n

∂θ̂

∂ρ̂
(rm+n, ρ̂),

d

dρ̂
θn(ρ̂) =

1
n

∂θ̂

∂ρ̂
(rm, ρ̂). (4.3.9)

Lemma 4.19. ∂
∂θ Im(φm+n,n(ζ)) < 0, if ζ = r0eiθ0 ∈ Qm,n,v, θ0 ∈ I ′m,n,v and ζm+n ∈ E.

Proof. Denote by ρ̂0 := ρ̂m+n(θ0) = ρ̂n(θ0). Suppose that ∂
∂θ Im(φm+n,n(ζ)) ≥ 0 by contradic-

tion. This implies that d
dθ ρ̂m+n(θ0) ≥ d

dθ ρ̂n(θ0). By considering their inverse functions, we have
d
dρ̂θm+n(ρ̂0) ≤ d

dρ̂θn(ρ̂0). Lemma 4.18 and (4.3.9) imply that

d

dρ̂
θm+n(ρ̂) <

d

dρ̂
θn(ρ̂), 0 < ρ̂ < ρ̂0.

The mean value theorem implies that |θm+n(ρ̂0) − θm+n(ρ̂)| < |θn(ρ̂0) − θn(ρ̂)|, 0 ≤ ρ̂ < ρ̂0 and
hence

θm+n(ρ̂) > θn(ρ̂), 0 ≤ ρ̂ < ρ̂0.

However, we have θm+n(0) = 2π〈 (a+b)v
m+n 〉 < θn(0) = 2π〈 bv

n 〉, a contradiction. This completes the
proof.
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Figure 4.14: Two arcs Q1,3,1, Q4,3,1, the radial line segment δ(2π/3), and two arcs Q5,3,−1 and
Q2,3,−1, from left to right, all connecting the origin with the point e2πi/3 (marked 1

3).

Consequently, the function θm,n,v : (0, 1) → I ′m,n,v is well-defined. Finally we will show (4.3.8).
When sinnθ = rm, we have

ρ̂(rm+n, (m+ n)θ) − ρ̂(rn, nθ)

=
rm+n(sin(m+ n)θ − r−m sinnθ − rn sinmθ)

(1 − rm+n cos(m+ n)θ)(1 − rn cosnθ)

=
rm+n(sin(m+ n)θ − 1 − rn sinmθ)

(1 − rm+n cos(m+ n)θ)(1 − rn cosnθ)
< 0.

The Intermediate Value Theorem implies that 0 < sinnθ < rm for θ = θm,n,v(r), so

lim
r→0

θm,n,v(r) = 2π〈bv
n
〉.

This completes the proof of Theorem 4.15.

Theorem 4.20. For each v 6= 0, Qv =
∪

(m,n)∈RQm,n,v is a dense subset of D.

Proof. We may suppose that v > 0. It is shown that the closure of Qv contains any radial line
segments δ(2πbv/n) for n > 2v, 0 < b < n, such that n, b are relatively prime.

Let m > a > 0 be integers such that a/m < b/n and mb − na = 1. The curve Qm+jn,n,v,
for each j > 0, connects the origin with the n-th root of unity e2πibv/n. Since the length of the
interval I ′m+jn,n,v tends to 0 as j → ∞, the curves Qm+jn,n,v accumulate to δ(2πbv/n). This
completes the proof.

Figure 4.14 shows four arcs Q1,3,1, Q4,3,1, Q5,3,−1 and Q2,3,−1 from left to right, together with
the radial line segment δ(2π/3), all connecting the origin with the point e2πi/3 (marked 1

3). This
indicates that the arcs Q1+3j,3,1 accumulate to δ(2π/3) as j → ∞ monotonically from left, while
the arcs Q2+3j,3,−1 accumulate to δ(2π/3) as j → ∞ monotonically from right.

4.3.5 Triangles which admit spiral multiple tilings with non-opposed parastichy
pairs

In this section, we consider shapes of triangular spiral multiple tilings with non-opposed parastichy
pairs.

Let

∆′′
+ = {(θ1, θ2) ∈ I2 : θ1, θ2 > 0, θ1 + 2θ2 < π} ⊂ ∆′

+,

∆′′
− = {(θ1, θ2) ∈ I2 : θ1, θ2 < 0, θ1 + 2θ2 > −π} ⊂ ∆′

−,
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and consider the mapping

Argm,n : D \ R → I2, Argm,n(ζ) = (Arg(ζm),Arg(ζn))

where m,n > 0 are relatively prime integers. Theorem 4.13 and Lemma 4.14 imply that
Argm,n(Qm,n,v) denotes the set of shapes of the triangles that admit spiral multiple tilings (4.3.6)
of multiplicity v with the non-opposed parastichy pair {m,n}.

Theorem 4.21. For each v > 0, L′
v :=

∪
(m,n)∈R Argm,n(Qm,n,v) is a nowhere dense subset of

∆′′
+.

Proof. Let ζ ∈ Qm,n,v. By Lemma 4.4, we have sinnθ = rm sin(m + n)θ − rm+n sinmθ, which
implies that |AmAm+n| = rm|A0Am+n| − rm+n|A0Am| by the Law of Sines. Thus we obtain
|AmAm+n| < |A0Am+n|, i.e., sinnθ < sin(π − (m+ n)θ), and hence 2π〈nθ

2π 〉 < π − 2π〈 (m+n)θ
2π 〉, so

Argm,n(ζ) ∈ ∆′′
+.

Fix v > 0 and letK ⊂ ∆′′
+ be a compact set. We shall show thatK intersects Argm,n(Qm,n,v) ⊂

`′m,n,v for only finitely many pairs (m,n). If (θ1, θ2) ∈ K ∩ Argm,n(Qm,n,v), then we have
nθ1 −mθ2 = 2πv and there exists 0 < r < 1 such that

sin(θ1 + θ2) = rn sin θ1 + r−m sin θ2. (4.3.10)

However, consider the function

f(θ1, θ2,m) = inf
0<r<1

(r(mθ2+2πv)/θ1 sin θ1 + r−m sin θ2). (4.3.11)

The minimum of the right hand side of (4.3.11) is attained at

r =
(

mθ1 sin θ2
(mθ2 + 2πv) sin θ1

) θ1
m(θ1+θ2)+2πv

.

By taking the limit as m→ ∞, we have

lim
m→∞

f(θ1, θ2,m) = (sin θ1)
θ1

θ1+θ2 (sin θ2)
θ2

θ1+θ2

(θ2
θ1

) θ1
θ1+θ2

+
(
θ1
θ2

) θ2
θ1+θ2


> sin(θ1 + θ2),

on (θ1, θ2) ∈ ∆′′
+. Since K is compact, we have f(θ1, θ2,m) > sin(θ1 + θ2), (θ1, θ2) ∈ K, for a

sufficiently large m > 0. Thus (4.3.10) hold for only finitely many m > 0.
If m is fixed, K intersects the line segment `′m,n,v for only finitely many n > 0, because `′m,n,v

tend to the θ2-axis as n→ ∞. This completes the proof.

Theorem 4.22. The union L′ :=
∪

v>0 L
′
v =

∪
v>0, (m,n)∈R Argm,n(Qm,n,v) is a dense subset of

∆′′
+.

Proof. We shall show that L′ contains any rational point (θ1, θ2) ∈ ∆′′
+ such that θ1, θ2 ∈ 2πQ.

First we observe that
sin(π − θ1 − θ2) > sin θ2

since (θ1, θ2) ∈ ∆′′
+. Let m,n > 0 be relatively prime integers such that v = (nθ1 −mθ2)/2π is

an integer. Let 0 < r < 1 be sufficiently close to 1 such that

sin(π − θ1 − θ2) > r−m sin θ2.
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Figure 4.15: (a) The curve Im(φ7,3(ζ)) = 0 in Figure 4.12 (b) redrawn. The arc Q4,3,1 connects
the point e2πi/3 with the origin. Two marks F denote the generators ζ = (0.8822 · · · )e2πi(0.339)

and ζ = (0.6984 · · · )e2πi(0.339) for the tilings in figure 4.16. (b) The solid line arg4,3(Q4,3,1) in the
stripe ι4,3(I) ∩ ∆′′

+ has an endpoint • in the interior of ∆′′
+.
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Figure 4.16: Spiral tilings with the non-opposed parastichy pair {4, 3} consisting of triangles of
the same shape. (a) ζ = (0.8822 · · · )e2πi(0.339). (b) ζ = (0.6984 · · · )e2πi(0.339).
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Figure 4.17: Spiral tilings by the right triangles with angles 30◦, 60◦, 90◦, with a non-opposed
parastichy pair {2, 7}. The divergence angle is θ = 7π/6. These two tilings are topologically
equivalent to each other. (a) r = 0.8803 · · · . (b) r = 0.7535 · · · .

Take k > 0 sufficiently large that

sin(π − θ1 − θ2) > rn+mk sin θ1 + r−m sin θ2,

and that ṽ = ((n +mk)θ1 −mθ2)/2π is still an integer. Since sin(π − θ1 − θ2) < sin θ1 + sin θ2,
the Intermediate Value Theorem implies that we can re-choose r < r̃ < 1 such that

sin(π − θ1 − θ2) = r̃n+mk sin θ1 + r̃−m sin θ2.

Hence (θ1, θ2) ∈ Argm,n+mk(Qm,n+mk,ṽ), which completes the proof.

Figure 4.12 (b) and Figure 4.15 (a) show Q4,3,1 as an arc connecting the origin and e2πi/3. Its
complex conjugate is Q4,3,−1. Two marks F on Q4,3,1 in Figure 4.15 (a) denote the generators
of spiral tilings with the non-opposed parastichy pair {4, 3} consisting of triangles of the same
shape, figure 4.16. Figure 4.15(b) shows the line segment arg4,3(Q4,3,1) in the stripe ι4,3(I)∩∆′′

+.
This indicates that the mapping Q4,3,1 → arg4,3(Q4,3,1) is 2 to 1, with a turning point • in this
figure.

4.3.6 Examples of triangles which admit spiral multiple tilings with opposed paras-
tichy pairs

By Theorem 4.13, we obtain the following example of triangular spiral multiple tilings with non-
opposed parastichy pairs.

(i) Spiral tilings by right triangles with angles 30◦, 60◦ and 90◦: The right triangle with
angles 30◦ and 60◦ has a spiral tilings with a non-opposed parastichy pair {2, 7}, since
7 · π

3 − 2 · π
6 = 2π. See Figure 4.17. The divergence angle θ = 7π/6 is determined by the

equations arg(ζ2) = π/3 and arg(ζ7) = π/6. The equation
√

3r9 − 2r2 + 1 = 0 has two
positive roots r = 0.8803 · · · and 0.7535 · · · .

(ii) Spiral tilings by right triangles with angles 45◦, 45◦ and 90◦: The right triangle with angles
45◦ and 45◦ has a spiral tilings with a non-opposed parastichy pair {1, 9}, since 9·π4−·π4 = 2π.
See Figure 4.18. The divergence angle θ = π/4 is determined by the equations arg(ζ1) = π/4
and arg(ζ9) = π/4. The equation r10 −

√
2r + 1 = 0 has two positive roots r = 0.8553 · · ·

and 0.7437 · · · .
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Figure 4.18: Spiral tilings by the right triangles with angles 45◦, 45◦, 90◦, with a non-opposed
parastichy pair {1, 9}. The divergence angle is θ = π/8. These two tilings are topologically
equivalent to each other. (a) r = 0.8553 · · · . (b) r = 0.7437 · · · .

4.4 Shape limit of triangular spiral multiple tilings with opposed parastichy
pairs

Let v > 0, θ ∈ (−πv, πv]. In this section we suppose that θ/2πv is a fixed irrational number.
In the continued fraction expansion of x = θ/2πv, we defined the sequences qj and qj,k, j > 0,
0 < k ≤ aj+1, in Section 2.3. For each j > 0 and 0 < k ≤ aj+1, denote by aj,k/mj,k < bj,k/nj,k a
pair of convergents of x = θ/2πv such that {mj,k, nj,k} = {qj , qj,k}. Suppose that j is sufficiently
large that (2π〈mj,kθ

2π 〉, 2π〈nj,kθ
2π 〉) ∈ ∆+. Let 0 < r = rj,k < 1 be the root of the equation

fm,n,θ(r) = 0, and ζj,k = rj,keiθ. Then we obtain a triangular spiral (multiple) tiling with an
opposed parastichy pair {m,n} = {mj,k, nj,k}.

Lemma 4.23. Arg(ζqj,k

j,k ) → 0 as j → ∞.

Proof. It is known that ∣∣∣∣ θ2πv − pj

qj

∣∣∣∣ ≤ C

q2j

where the constant C > 0 is independent of j. Hence

|Arg(ζqj,k

j,k )| ≤ |Arg(ζqj

j,k)| = 2π|〈qjθ
2π

〉| = 2π|qjθ
2π

− pjv| ≤
2πCv
qj

→ 0

as j → ∞.

Lemma 4.24. Let v > 0, θ ∈ (−π, π], and suppose that θ/2πv is an irrational number. Then
the angles ∠(1, ζmj,k

j,k , ζ
nj,k

j,k ) and ∠(ζmj,k

j,k , ζ
nj,k

j,k , 1) tend to 0 as j → ∞.

Proof. Since (4.1.2) generated by ζj,k is a triangular spiral multiple tiling of multiplicity v with
an opposed parastichy pair {mj,k, nj,k}, the four points ζmj,k

j,k , 0, ζnj,k

j,k , 1 lie on a same circle. Thus
we have

∠(1, ζmj,k

j,k , ζ
nj,k

j,k ) = ∠(1, 0, ζnj,k

j,k ) = Arg(ζnj,k

j,k ) → 0,

∠(ζmj,k

j,k , ζ
nj,k

j,k , 1) = ∠(ζmj,k

j,k , 0, 1) = Arg(ζmj,k

j,k ) → 0

as j → ∞.

Suppose that θ/2πv is a quadratic irrational number.
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Lemma 4.25. Suppose that θ/2πv is a quadratic irrational number. Then we have

0 < 1 − rj,k ≤ C

m3
j,k

,

where C > 0 is a constant independent of j, k.

Proof. Since θ/2πv is a fixed quadratic irrational number, the coefficients aj are bounded, and
hence the ratios nj,k/mj,k are also bounded. Moreover, there exist constants C1, C2 > 0, inde-
pendent of j > 0, 0 < k ≤ aj+1, such that

C1

q2j,k
<

∣∣∣∣ θ2πv −
pj,k

qj,k

∣∣∣∣ < C2

q2j,k
.

This implies that
C1v

mj,k
<

∣∣∣∣〈mj,kθ

2π
〉
∣∣∣∣ < C2v

mj,k
. (4.4.1)

We adopt a notation ϕ = O(m−s) when there exists a constant C independent of j, k such that
|ϕ| ≤ C/ms

j,k. Then we have

sinmj,kθ = 2π〈
mj,kθ

2π
〉 − (2π)3

6
〈
mj,kθ

2π
〉3 +O(m−5

j,k) = O(m−1
j,k),

cosmj,kθ = 1 − (2π)2

2
〈
mj,kθ

2π
〉2 +

(2π)4

24
〈
mj,kθ

2π
〉4 +O(m−6

j,k) = 1 +O(m−2
j,k).

By the equation fmj,k,nj,k
(r, θ) = 0, we have

(rm
j,k − cosmj,kθ) sinnj,kθ − (rn

j,k − cosnj,kθ) sinmj,kθ = 0,

and so we have

(rm
j,k − 1 −O(m−2

j,k))O(m−1
j,k) − (rn

j,k − 1 −O(m−2
j,k))O(m−1

j,k) = 0

Thus we obtain

1 − r =
O(m−2

j,k)∑mj,k−1
s=0 rs

j,k +
∑nj,k−1

s=0 rs
j,k

.

Since we have 1 − rj,k ≤ C/m2
j,k, that is, this implies that

mj,k−1∑
s=0

rs ≥
mj,k−1∑

s=0

(1 − C

m2
j,k

)s =
mj,k

C
(1 − (1 − C

m2
j,k

)m
j,k) ≥ C ′mj,k

with C ′ > 0. Hence we obtain 1 − rj,k = O(m−3
j,k). Let tj,k = 1 − rj,k. Then we have

r
mj,k

j,k = 1 +O(m−2
j,k), rnj,k

j,k = 1 +O(m−2
j,k).

That is, limj→∞ r
mj,k

j,k = limj→∞ r
nj,k

j,k = 1.

Let R(θ, v) be the set of ratios (ζnj,k

j,k − 1)/(ζmj,k

j,k − 1) for j > 0 and 0 < k ≤ aj . Let

Ω(θ, v) := Ω(R(θ, v))

be the limit set, i.e., the set of the accumulation points, of R(θ, v).
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Figure 4.19: A triangular spiral tiling with the divergence angle θ = 2πτ . (a) r = 0.9965 · · · and
the opposed parastichy pair is {13, 8}. (b) Local view around the tile T0.

Theorem 4.26. Suppose that θ/2πv is a quadratic irrational number. Then we have

Ω(θ, v) = {(ωs+1 − k)(−1)s

: 1 ≤ s ≤ d, 0 < k ≤ bs+1}. (4.4.2)

In particular, it is a finite set.

Proof. Since θ/2πv is a quadratic irrational number, we have (4.4.1). So we have

ζ
nj,k

j,k − 1

ζ
mj,k

j,k − 1
=

−1 + rn cosnθ + irn sinnθ
−1 + rm cosmθ + irm sinmθ

=
−1 + 1 +O(m−2) + i(2π〈nθ

2π 〉 +O(m−2))

−1 + 1 +O(m−2) + i(2π〈mθ
2π 〉 +O(m−2))

=
2πi〈nθ

2π 〉 +O(m−2)

2πi〈mθ
2π 〉 +O(m−2)

=
2πi〈nθ

2π 〉(1 +O(m−1))

2πi〈mθ
2π 〉(1 +O(m−1))

=
〈nθ
2π 〉

〈mθ
2π 〉

(1 +O(m−1)),

where we denote by m = mj,k, n = nj,k. Thus it is written as

ζ
nj,k

j,k − 1

ζ
mj,k

j,k − 1
=

(
〈 qj,kθ

2πv 〉
〈 qjθ
2πv 〉

)(−1)j

(1 +O(q−1)).

By using the continued fractions, we have

〈
qj,kθ

2πv
〉/〈 qjθ

2πv
〉 = −[aj+1 − k, aj+2, aj+3, . . . ]

= −[bs+1 − k, bs+2, bs+3, . . . ]
= −(ωs+1 − k)

for j sufficiently large, and 0 < k ≤ bs+1. Thus we obtain (4.4.2).

Corollary 4.27. If the coefficients aj = 1 of the continued fraction expansion of θ/2πv for
sufficiently large j, then Ω(θ, v) = {−τ,−1/τ}.
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Proof. Since the golden section has a purely periodic continued fraction expansion τ = [1, 1, . . . ] =
[1, 1, 1], we have

〈qj,1θ
2πv

〉/〈 qjθ
2πv

〉 = −[1 − 1, 1, 1, . . . ] = −1
τ

for sufficiently large j.

Figure 4.19 shows a triangular spiral tiling generated by z = re2πiτ , r = 0.9965, τ = (1+
√

5)/2,
with an opposed parastichy pair {8, 13}, and the ratio (z8 − 1)/(z13 − 1) = −1.348+0.857i. If we
fix the divergence angle 2πτ , and consider larger the Fibonacci numbers as an opposed parastichy
pair, for example {55, 89}, then we have r = 0.999989, and so the ratio (z55 − 1)/(z89 − 1) =
−1.61208 + 0.13355i gets closer to −τ = −1.618. By Corollary 4.27, the limit of these ratios is
−τ .
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Chapter 5

Concluding remarks

In Part I, Part II and Part III, we could give theoretical frameworks about the helical Voronoi
tilings on the cylinder, the Voronoi spiral tilings and the triangular spiral tilings. As prospects
of the thesis, we have the following two studies: A mathematical description of flat-foldable
for triangular spiral multiple tilings as the rigid origami and a mathematical application of the
theoretical framework of the spiral tilings for geometrical phyllotactic Voronoi tilings based on
the Vogel model.

One of the prospects is to consider the following question about origami developments for
the triangular spiral multiple tilings. Can we fold a triangular spiral multiple tiling as the rigid
origami ? Computational simulations of triangular spiral multiple tilings show that the Fibonacci
tornado is flat-foldable (See Figure 5.1). Moreover, for the rigid origami of the triangular spiral
multiple tilings, we have the following questions. How flexible are rigid origami sheets of triangular
spiral multiple tilings ? Which rigid origami sheets for the triangular spiral multiple tilings are
flat-foldable ? In other words, we need a necessary and sufficient condition for flat-foldable of the
triangular spiral multiple tilings by the rigid origami sheets.

(a) (b) (c)

Figure 5.1: A computational simulation for the Fibonacci tornado in Figure 4.5. (a) A rigid
origami sheet. (b) Side view from right, before squash. (c) Top-down view, after squashed.

Another of the prospects is to explain the combinatorial structures of geometrical phyllotactic
Voronoi tilings based on the Vogel model. The theoretical frameworks of the helical Voronoi tilings
on the cylinder and the Voronoi spiral tilings can be applied to this study.
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