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Geometry of Phyllotactic Spiral Tilings

T11D001 Takamichi Sushida
Abstract

Phyllotaxis is the regular arrangements of primordia of leaves and other organs of plants.
Typical phyllotactic patterns form the spiral structures described by the golden section 7 = 1+—2‘/5
and the Fibonacci numbers 1,1,2,3,5,8,13,---. In early half of the 19th century, the classical
subject of geometrical phyllotactic patterns was started from the study of the cylindrical model
(the linear model) by Bravais brothers. Moreover, it has studied as a multidisciplinary subject
which contains the study of the disk model (the non-linear model) based on the mathematical
model by Vogel. The main subject of the thesis is to describe comprehensively Voronoi spiral
tilings and triangular spiral tilings.

First, we consider a tiling given as a Voronoi diagram with the spiral lattice A(§) = {Z(mod 1),
E=x+1iy € C, y > 0 of the cylinder C/Z. We show that a bifurcation process of combinatorial
structures by monotone decreasing of y > 0 as x is fixed, is explained by the continued fraction
of z. A bifurcation diagram of combinatorial structures is the union of arcs. A complex number
& on each arc produces a rectangle tiling. Moreover, we consider limit sets of aspect ratios of
rectangular tiles. If x is a fixed quadratic irrational, then the limit set given by y — 0 is a finite
set written by quadratic irrationals. In the phyllotaxis theory, an irrational number which is
linearity equivalent of 7 plays a vital role, and it is called the noble number. In particular, if =
is a noble number, then the limit shape is the square. This is an extended result to the shape
invariance under compression by Rothen and Koch.

By the complex exponential function exp : C — C\{0}, A(§) of C/Z is mapped as the spiral
lattice S = {(/}jez of the punctured plane C\{0} generated by ( = e°. Second, we consider
the Voronoi spiral tilings with S of C*. We show that a bifurcation process of combinatorial
structures by monotone increasing of 0 < r < 1 as Arg((¢)/2n is fixed, is explained by the
continued fraction of Arg(()/2m, where —m < Arg(z) < 7 denotes the principal argument of
z € C\{0}. A bifurcation diagram of combinatorial structures for Voronoi spiral tilings is the
union of branches of real algebraic curves parameterized by Arg(¢). A complex number ¢ on
each branch produces a quadrilateral tiling. Moreover, we consider limit sets of aspect ratios of
quadrilateral tiles. If Arg({)/2m is a fixed quadratic irrational, then the aspect ratios are written
by the linear approximation, and we obtain the same results as Voronoi tilings on C/Z.

Finally, we consider the triangular spiral tilings with S of C\{0}. The triangular spiral
tilings was devised as geometrical architectures with phyllotactic patterns by Akio Hizume. The
set of generators ¢ which produce triangular spiral tilings with opposed parastichy pairs, is the
union of branches of real algebraic curves parameterized by Arg(¢). On the other hand, a set
of generators ¢ which produce triangular spiral tilings with non-opposed parastichy pairs, is the
union of branches of real algebraic curves parameterized by |(|, and it gives a dense subset of D.
Next we consider limit sets of line segment ratios of tiles for triangular spiral tilings with opposed
parastichy pairs. In the same way as the Voronoi spiral tilings, if Arg(¢)/2n is a fixed quadratic
irrational, then the line segment ratios are written by the linear approximation, and we obtain
the same results as Voronoi tilings on C/Z. In particular, if Arg(¢)/27 is a noble number, then
the limit set is written by 7.

Throughout the thesis, the proofs of the Voronoi spiral tilings and the triangular spiral tilings
are given under multiple tilings defined as a tiling of a covering space of the punctured plane C*.
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Chapter 1

Introduction

The main subjects of the thesis are Voronoi spiral tilings [63] and triangular spiral tilings [59,
60, 61, 62] which admit a transitive action by the similarity transformation group S = {(’};ez of
the punctured plane C* := C\{0}, which is generated by a single element ¢ = re' € D\R. The
topology of spiral tilings is intimately related to the phyllotaxis theory. First, we recall several
topics related to the subject of phyllotaxis. Second, we introduce phyllotactic architectures by
Akio Hizume. Finally, we explain an outline of the thesis.

1.1 Background
1.1.1 Several topics related to the subject of phyllotaxis

One of the most beautiful features of plants is the regular arrangements of botanical units such
as leaves and other organs, which are called phyllotazis [35]. For example, phyllotactic patterns
are observed in leaves on a stem, scales on a pine cone, a skin of a pineapple and florets in the
head inflorescence of a daisy such as a sunflower.

In the subject of phyllotaxis, from the viewpoint of symmetry, the phyllotactic patterns are
classified four broad categories which are called the spiral phyllotaxis, the distichous phyllotaxis,
the whorled phyllotaxis and the multijugate phyllotaxis, respectively. In the spiral phyllotaxis,
botanical units grow one by one at each node of a stem, and an angle between two successive
botanical units is called the divergence angle. In the distichous phyllotaxis, botanical units grow
one by one at each node of a stem, which is preserving the divergence angle 7 radians. This is
a special case of the spiral phyllotaxis. In the whorled phyllotaxis, two or more botanical units
grow at each node on a stem. Botanical units in a node are uniformly spread around the stem
at a center between botanical units in the previous node. In the multijugate phyllotaxis, two
or more botanical units grow at each node on the stem, and botanical units in a whorl grow
uniformly around the stem. Moreover, each whorl preserves a constant divergence angle between
the previous whorl.

It is well observed that most of phyllotactic patterns are the spiral phyllotaxis. The spiral
phyllotaxis is classified as the planar phyllotaxis and the cylindrical phyllotazris. As a remarkable
feature of the planar phyllotaxis and the cylindrical phyllotaxis, it is well observed that combi-
natorial structures (the divergence angle and the number of visible spirals) of typical plants are
described by the golden section 7 = 1‘*'2—‘/5 and the Fibonacci numbers 1,2,3,5,8,13,---. For
example, the divergence angle of the spiral phyllotactic patterns of typical plants such as a sun-
flower is written by the golden section, and a pair of the number of two parastichies (clockwise
spirals or counterclockwise spirals) is a pair of two successive terms of the Fibonacci sequence.
It is often called the Fibonacci phyllotaxis. In addition to the Fibonacci phyllotaxis, there are
spiral phyllotactic patterns described by the Lucas numbers 1,3,4,7,11,18,---. It is often called

the Lucas phyllotazis, and its divergence angle is written by the irrational number 5‘*1(‘)/‘;’, where
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5}) is an irrational number which is linearity equivalent of the golden section 7. According

to the investigation by Jean [35, pp.21], the Fibonacci phyllotaxis arises more than 92% and
the Lucas phyllotaxis arises about 2%. That is, the Lucas phyllotaxis is the minority compared
with the Fibonacci phyllotaxis. In addition to the both phyllotactic patterns, there are spiral
phyllotactic patterns described by the Fibonacci-like sequences such that 1,4,5,9,14,23,--- and
1,5,6,11,17,28,--- etc. These phyllotactic patterns are the minority compared with the Fi-
bonacci phyllotaxis. In the study of phyllotaxis, the following problem is the central problem.
What are physical, chemical or biological mechanisms that most of spiral phyllotactic patterns
are described by the golden section and the Fibonacci numbers ? In order to elucidate the above
central problem, phyllotactic patterns have studied as an interdisciplinary subject related to
mathematics, physics, chemical and biology, from the ancient times. See the historical review [1].

The mathematical study of phyllotaxis has continued from early half of the 19th century.
In 1837, Bravais brothers derived a cylindrical representation of phyllotaxis and studied the
relationship between the continued fraction approximations of the divergence angles and the
lattice structures. By subsequent studies [12, 35, 2] about the cylindrical model of phyllotaxis,
its mathematical formulation was rewritten by scientists Coxeter [10], Adler [2], Erickson [12,
Chapter 3], Jean [35]. In 1989, Rothen and Koch studied the shape invariance under compression
in the Voronoi tilings with the cylindrical lattices on the cylinder [49]. Recently, the bifurcation
processes of the combinatorial structures in the Voronoi tilings with the cylindrical lattices on the
cylinder was described from the viewpoint of dynamical systems [3]. In addition to the cylindrical
model, Vogel [72] proposed the simplest disk model for a phyllotactic pattern of a sunflower as the
sequence in 1979. Its sequence is given by the complex sequence V' = {¢; (r)ei'jg}jeN, oi(r) =rv7,
where r > 0 and 0 € R are constants. In the disk model, combinatorial structures in the Voronoi
tiling with the site set V' are studied from the viewpoint of crystallography [45, 46, 47]. In addition
to the cylindrical model and the disk model, there are studies about the conical model [5] and
the curvature model [48]. In the geometrical approach, there is a tendency which deals with a
model suitable for the problem. Under any geometrical models, the continued fractions [22, 68]
and the lattice structures [9] play important roles.

On the other hand, there are studies about self-organized processes of phyllotactic patterns
from the viewpoint of mathematical biology. In the phyllotaxis theory, it was considered that
a botanical unit which is generated together with the growth of a plant grow while generating
a diffusible inhibitor. That is, it implies that each botanical unit is generated at a place with
the least influential of inhibitor which compared to the previous one. In 1970s, corresponding
two dimensional diffusion equations were proposed [70, 71, 74]. In 1996, Douady and Couder
[14, 15, 16] did an artificial experiment of the disk model of phyllotaxis and they showed the
bifurcation diagram of combinatorial structures. Recently, there are new proposals of the reaction
diffusion equation [52, 69].

Moreover, by the progress of the biological study of phyllotaxis, it is known that one of reason
which the divergence angle is the golden angle, is an auxin transportation [44, 7, 38] between cells
in a plant. Recently, several model equations (non-linearity partial differential equations) which
is considering an auxin fluctuation concentration, are proposed [53, 8, 40].

1.1.2 Phyllotactic architectures by Akio Hizume

In addition to studies of the classical subject of phyllotaxis, several phyllotactic architectures
were devised by Akio Hizume who is inspired by the golden section and the Fibonacci numbers.
In 1987, he devised an architecture which extracted a mathematical essence of the Fibonacci
phyllotaxis of a sunflower. It was named the sunflower tower [24], and he manufactured it as
a giant architecture by using bamboos (See Figure 1.1). In 2005, he devised triangular spiral
tilings named the Fibonacci tornado [25], as a foundation of the sunflower towers (See Figure
1.2 and Figure 4.4). The remarkable feature of the Fibonacci tornado is admitting no rotational
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Figure 1.1: The sunflower tower manufactured by bamboos. There are two pictures in Hizume’s
web page (http://www.starcage.org). (a) Side view of the sunflower tower. (b) Bottom-up view
of the sunflower tower.

(a) (b)

Figure 1.2: The Fibonacci tornado designed as a tower. There are two pictures in Hizume’s web
page. (a) Side view of the top. (b) Top-down view.

symmetry and involving a transitive action by a similarity transformation written by the golden
angle. That is, in the Fibonacci tornado, any two triangles are not congruence. In the tiling
theory [20, 65, 21], tilings which admit an action by a similarity symmetry group are well-known.
However, there are not studies of triangular spiral tilings such as the Fibonacci tornado.

The Fibonacci tornado is a tiling of the plane R? given by the following theorem, where a
tiling of the plane R? conforms to the definition in the tiling theory (See Definition 2.1).

Theorem 1.1 ([25]). Let Aj := (r/ cos2n7j, 77 sin277j) € R? with 0 < r < 1, where 7 = %5
is the golden section. Let F,, := {fp}n>1 be the Fibonacci sequence determined by fi = 2, fa =3,
frn+2 = fox1 + fn, n > 1. Then, for each n > 1, there exists 0 < r < 1 uniquely such that the
family of triangles T = {A(Aj, Aji g, Ajrs,.1)} ez gives a tiling of R2.

In 2008, he succeeded to progress the theory of triangular spiral tilings by applying the
continued fraction theory, and they are named the real tornado [29]. In 2009, Akio Hizume and
Yoshikazu Yamagishi showed a mathematical description between triangular spiral tilings and
the continued fractions of the divergence angles [30, 31]. In these studies, it was observed that
there are triangular spiral tilings without the relation with the continued fraction expansions of
the divergence angles.

As an another background about the Fibonacci tornado, there is its origami development. Its
origin is an origami art by Fuse Tomoko, a Japanese origami artist. In 1994, she devised origami
towers named the twisted multiple towers [17, 18] based on her origami lampshades. Their top-
down views are spiral sequences of concentric regular polygons. Exactly, these patterns are tilings
by congruence polygons which are well-known in the tiling theory. Recently, these origami designs
are applied into a clothing by Issey Miyake and Jun Mitani ! In addition to the twisted multiple

Tssey Miyake and Reality Lab Project Team, ‘132.5 ISSEY MIYAKE’, in: REALITY LAB: rebirth and regen-
eration, exhibition, (directors: Issey Miyake and Katsumi Asaba), 21_21 DESIGN SIGHT, Tokyo, 16 November to
26 December 2010.
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towers, there are also Chris Palmer’s flower towers [51]. In 2005, Akio Hizume was influenced
by the twisted multiple towers and he succeeded to make the Fibonacci tornado as an origami
development by one sheet of paper [26] (See Figure 4.5).

At almost the same time, Taketoshi Nojima devised an origami development with phyllotactic
patterns, called Nojima’s pine cone [54]. In his studies, there are origami developments manu-
factured by metals [41, 42]. In the study of the rigid origami [67] manufactured by metals etc,
Miura ori [39] applied solar panels of satellites and the Stanford bunny by Tomohiro Tachi [66] are
famous rigid origami architectures. It is the remarkable fact that these rigid origami architectures
are folded in one sheet of paper. There is a comprehensive text about origami foldability [43].
Recently, there are new proposals of origami developments and these engineering applications

33, 34].

1.2 Outline of the thesis

The thesis consists of three parts. The aim of Part I is to give an extended results for the
shape invariance under compression by Rothen and Koch [49] in the helical Voronoi tilings on the
cylinder [64]. The aim of Part IT and Part III is to construct theoretical frameworks about the
Voronoi spiral tilings [63] and the triangular spiral tilings [59, 60, 61, 62], which are not known
in the tiling theory.

1.2.1 Helical Voronoi tilings

Part I gives a mathematical description of the helical Voronoi tilings on the cylinder. In this part,
we consider the Voronoi tiling V(2) := {V(\) }xen(z)

V) =V(Xh2):={CeC:[C=A<|C=N|, VN € A(2)}.

of the plane C with the site set A(z) := 2Z + Z, where z = z + iy € C\R, z,y € R. In the
phyllotaxis theory, z = Re(z) is called the divergence and ¢¥ = ™) = |e7##| is called the

plastochrone ratio. By the conical projection 7 : C — C/Z, the plane C is a covering space of the
cylinder C/Z. Thus, the family 7 (z) := {T(\)}rea(s)s

TN = {C € C/Z : dist(¢, 7(\)) < dist(¢, 7(N)), VN € A(2)}, A € A2).

of the cylinder C/Z admits a transitive action by an additive group of translations m(zZ + Z) =
7(z)Z generated by a single element 7(z).

Two distinct tiles T7,7T» € 7 (z) are adjacent if T1 N Ty contains at least two points. Let
E={2€C:|z—1| <3} If 2 ¢ Z+ E, then the two tiles V(0), V(1) € V(2) are adjacent to
each other, and hence the Voronoi region T7'(0) = T'(1) in the cylinder is not simply connected. If
z € Z+ E\R, then T'(\), A € A(z), are simply connected, and 7 (z) is a tiling of the cylinder by
convex polygons. It is called the helical Voronoi tiling generated by z.

In Section 2.1, it is shown in Lemma 2.4 that tiles of helical Voronoi tilings 7 (z) are hexagons
or rectangles.

In the phyllotaxis theory, the pair {m,n} of positive integers is called an opposed parastichy
pair if V(0) is adjacent to V(mz — a),V(nz —b), and Re(nz — b) - Re(mz — a) < 0, for some
a,b € Z. It is shown in Lemma 2.4 that helical Voronoi tilings 7 (z) have opposed parastichy
pairs.

If a helical Voronoi tiling becomes a rectangular tiling with an opposed parastichy pair {m, n},
then the four points 0, A\, A + A and )\ lie on a same circle in this order of vertices, where
A=mz—a, N =nz—b. In Section 2.2, we describe the set (Figure 2.1) of generators z which
produce rectangular tilings for each opposed parastichy pair {m,n}. it is shown in Lemma 2.5
that there are generators z which produce hexagonal tilings for every opposed parastichy pairs,
by its bifurcation diagram.
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In Section 2.3, we show a relationship between the continued fraction expansions of the di-
vergence and opposed parastichy pairs of the helical Voronoi tilings.

In Section 2.4, we consider the shape convergence property of the rectangular helical Voronoi
tilings. We address the following question:

e What are limit shapes of rectangular tiles ¢

We consider the limit set of shape parameters (aspect ratios) of rectangular tiles as y tends to
0, when z is a fixed irrational number. If z is a fixed quadratic irrational, then it is shown in
Theorem 2.9 that the limit set of shape parameters of rectangular tiles is a finite set written by
quadratic irrationals. Moreover, if x is a fixed irrational number which is a linearity equivalent
of the golden section 7, it is shown in Corollary 2.10 that the limit shape of the rectangular tiles

is the square. It gives the extended result of the shape invariance under compression written in
[49].

1.2.2 Voronoi spiral tilings

Part II gives mathematical description about the Voronoi spiral tilings. The Voronoi spiral tiling
is a Voronoi tiling 7 (¢) = {7} };ez of C* with the spiral site set S = {(’};cz generated by a single
element ¢ = rel? € D\R, 0 < r < 1. First, we address the following essential question:

o What is a Voronoi spiral multiple tiling geometrically possible ¢

In Section 3.1, we consider a Voronoi tiling 7 (¢) with the spiral site set S on an open Riemann
surface M, such that the exponential function is an isomorphism of the additive group C, :=
C/27mviZ onto the multiplicative group M, where v # 0 is an integer. It is shown that a Voronoi
tiling of the open Riemann surface M, is a polygonal tiling. We call these polygonal tilings the
Voronoi spiral multiple tilings. Moreover, it is shown in Lemma 3.3 that tiles T} of Voronoi spiral
multiple tilings are hexagons or quadrilaterals. In particular, the case of quadrilateral tilings is
a special case which is called the degenerate case in the subject of the Voronoi diagram [6, 56].
In the phyllotaxis theory, the pair {m,n} of a Voronoi spiral multiple tiling is called an opposed
parastichy pair if Ty is adjacent to T),, T;, and arg(¢™) arg(¢™) < 0, and a non-opposed parastichy
pair if Ty is adjacent to Ty, T, and arg(¢™)arg(¢"™) > 0, where arg(¢) € (—|mv|,|mv|] be an
argument of ¢ € M,. It is the remarkable feature that the Voronoi spiral multiple tilings by
quadrilaterals have opposed parastichy pairs, whereas there exists a triangular spiral multiple
tiling with a non-opposed parastichy pair.

In Section 3.2, we show that transitions of opposed parastichy pairs of the Voronoi spiral
multiple tilings are described by the continued fraction approximations of §/27v when 0/27v is
fixed and 1/r is decreased monotonically from a sufficiently large value to a sufficiently small
value.

By Section 3.1 and 3.2, there are not generators ¢ € D\R which produce Voronoi spiral
multiple tilings by quadrilaterals with non-opposed parastichy pairs, and an opposed parastichy
pair of a quadrilateral tiling is a pair of denominators of principal or intermediate convegents of
0/2mv, at least one of which is principal.

If a Voronoi spiral multiple tiling of multiplicity v becomes a degenerate quadrilateral tiling
with an opposed parastichy pair {m,n}, then the four points 1, (™, ("™ and (" lie on a same
circle in U C M,. In this section, we address the following question about the quadrilateral
Voronoi spiral multiple tilings:

o Which generators ( € M, produce quadrilateral Voronoi spiral multiple tilings ?

In Section 3.3, we consider the set B,,,, of generators ¢ € M, which produce quadrilateral
Voronoi spiral multiple tilings of multiplicity v, with an opposed parastichy pair {m,n}. It
is shown in Theorem 3.12 and Lemma 3.13 that B,, . is a branch of a real algebraic curve
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which is parameterized by the divergence angle § = arg((), in . Next, we consider the union
By = U(m,n)er Bmmn, for each v, where R = {(m,n) € Z? : m > n > 0 are relatively prime}.
Figure 3.5 shows the set By U B_1. This set is not a dense subset of ). Moreover, it is shown in
Theorem 3.15 that the union of B := Uv#o U(m,n)eR By nv gives a dense subset of D.

In Section 3.4, we consider the shape convergence property of the quadrilateral Voronoi spiral
multiple tilings. We address the following question:

o What are limit shapes of quadrilateral tiles ¢

We consider the limit set of shape parameters of quadrilateral tiles for quadrilateral Voronoi
spiral multiple tilings as 1/r — 1, when 6/27v is a fixed irrational number. If /27v is a fixed
quadratic irrational, then it is shown in Theorem 3.18 that the limit set of shape parameters of
quadrilateral tiles is a finite set written by quadratic irrationals. Moreover, if /27v is a fixed
irrational number which is a linearity equivalent of the golden section 7, it is shown in Corollary
3.19 that the limit shape of the quadrilateral tiles is the square.

1.2.3 Triangular spiral tilings

Part III gives a mathematical description of the triangular spiral tilings. First, we address the
following essential question:

o What is a quadrilateral spiral multiple tiling geometrically possible ?

In Section 4.1, first, we define a spiral multiple tiling as a tiling of a covering space of the
punctured plane C*. Second, we consider the spiral sequence S = {¢’ }jez of C* generated by a
single element ¢ = rel? € D\R with 0 < r < 1, and we show that a quadrilateral spiral multiple
tiling is determined by a triplet (¢,m,n), where m,n > 0 are relatively prime integers. If
To :=0(1,¢™, ™" (™) is a quadrilateral of C* in this order of vertices, it is shown in Theorem
4.2 that the family of quadrilaterals 7 = {T} := O(¢7, 7™, ¢ItmHn (IT7)} ey gives a spiral
multiple tiling of C*, with multiplicity v := [nArg({™) — mArg(¢™)|/2m, where —m < Arg(z) <=
denotes the principal argument of z # 0.

In the phyllotaxis theory, the pair {m,n} of a quadrilateral spiral multiple tiling 7 is called an
opposed parastichy pairif Arg(¢")Arg(¢") < 0, and a non-opposed parastichy pairif Arg(¢"™)Arg(¢") >
0. In Section 4.2, we show that it has a natural extension to spiral multiple tilings. If {m,n} is
an opposed parastichy pair of a quadrilateral spiral multiple tiling of multiplicity v, it is shown
in Theorem 4.3 that m,n are denominators of principal or intermediate convergents of /27v, at
least one of which is principal.

If three vertices of the quadrilateral T lie on a same line, then Ty becomes a triangle, that is, a
triangular spiral multiple tiling is a special case of quadrilateral spiral multiple tilings. In Section
4.3, we consider triangular spiral multiple tilings with opposed parastichy pairs or non-opposed
parastichy pairs. In this section, we address the following questions about the triangular spiral
multiple tilings:

o What triangles admit spiral multiple tilings ¢
e Which generators ¢ € D\R produce triangular spiral multiple tilings ¢

About the first question, it is shown in Theorem 4.7 and Theorem 4.21 that, for each mul-
tiplicity v > 0, the set of shapes of triangles which admit spiral multiple tiling with opposed
parastichy pairs or non-opposed parastichy pairs, is a nowhere dense subset of the parameter
space Ay. Moreover, it is shown in Theorem 4.7 and Theorem 4.22 that the union of these sets
for all multiplicity v gives a dense subset of the parameter space A;. By Theorem 4.5 and The-
orem 4.13, we can consider whether a fixed triangle admits a spiral multiple tiling. For example,
we could obtain spiral tilings by equilateral triangles, right triangles with the angles 30°, 60°, 90°
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or right triangles with the angles 45°, 45°, 90° (See Figure 4.7, 4.17 and 4.18). About multiple
tilings, we could obtain a spiral multiple tiling of multiplicity v = 2 by right triangles with the
angles 30°, 60°, 90° (See Figure 4.9). Moreover, we present origami sheets of Figure 4.7 and 4.9.

About the second question, we show the followings. It is shown that the set P, , , of gener-
ators ¢ € D\R which produce triangular spiral multiple tilings of multiplicity v with an opposed
parastichy pair {m,n} is a branch of a real algebraic curve which are parameterized by the di-
vergence angle § = Arg((). Next, we consider the union P, := U(m’n)GR Py, v for each v. Figure
4.13 shows the set P, U P_q. This set is not a dense subset of D. However, it has an interesting
resemblance to a diagram in the topology of knot complements [23, Fig.4] which has PSL(2;Z)
symmetry. It is shown in Theorem 4.12 that the union P :=J, £0 P, is a dense subset of D.

On the other hand, it is shown in Theorem 4.15 that the set Q. of generators ¢ € D\R
which produce triangular spiral multiple tilings of multiplicity v with non-opposed parastichy
pair {m,n} is a branch of a real algebraic curve which are parameterized by the plastochrone
ratio 7 = |(|. For each v, it is shown in Theorem 4.20 that the union @, := U(m,n)eR Qmmw is a
dense subset of .

In Section 4.4, we consider the shape convergence property of the triangular spiral multiple
tilings with opposed parastichy pairs. We address the following question:

o What are limit shapes of triangle tiles ?

It is shown in Theorem 4.26 that if the divergence angle # is written by a fixed quadratic irrational,
then the limit set of shape parameters (ratios of line segments) of triangle tiles is a finite set. In
particular, when the divergence angle is written as an irrational number of the golden section T,
it is shown in Corollary 4.27 that the limit set of the shape parameters of the triangle tiles is
written by the golden section 7.

Finally, we give conclusion remarks in Chapter 5.
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Chapter 2

Helical Voronoi tilings on the
cylinder

2.1 Voronoi tilings for cylindrical lattices

In the thesis, we deal with a tiling of a two dimensional manifold defined as follows, where the
following definition is based on the tiling theory [21].

Definition 2.1. A tiling of a two dimensional manifold X is a family T = {T}}; of topological
disks Tj C X which covers X without gaps or overlaps, that is, X =J; T and int(Tj) Nint(Ty) =
0, j # k. Each T} is called a tile.

Let z = x + iy € H, where H = {z € C : Im(z) > 0}. In the phyllotaxis theory, x = Re(z) is
called the divergence and e¥ = e™(*) = |e=%#| is called the plastochrone ratio. Next, we consider
a Voronoi tiling of the complex plane C with the site set A(z) := zZ + Z, which is defined as
follows. The following definition is based on the subject of Voronoi diagram [6, 56].

Definition 2.2. The Voronoi region of the site A € A(z) is defined by
V) =V(X2):={CeC:|¢—N<[¢=N|, VN € Al2)}. (2.1.1)

The family V(z) := {V(A)}ren(z) is called the Voronoi tiling or the Voronoi diagram, with the
site set A(z).

It is easy to see that the Voronoi region V(A), A € A(z) is a bounded polygon of C. The
Voronoi tiling V(z) is a periodic tiling with respect to the additive group of translations A(z),
since V(\) = V(0)+ X for each A € A(z). Moreover, we have V(z) = V(—z) = V(z+1) = 2-V(z7})
because 2Z +7Z = (—2)Z+7Z = (z + )Z = 2(2"Z + 7).

By the canonical projection 7 : C — C/Z, C is a covering space of the cylinder C/Z. The
Euclidean metric of C induces a canonical distance in C/Z. The Voronoi regions in C/Z with
respect to the site set m(A(z)) are given by

T(N\) :={¢ € C/Z : dist(¢,n(N)) < dist(¢, w(N)), VN € A(2)}, X € A(2).

Note that T'(A) = 7(V(A)). The family 7(2) := {T'(\)}ren(z) admits a transitive action of an
additive group of translations 7(2Z + Z) = w(z) Z, generated by a single element 7(z).

Two distinct tiles 17, Ty are adjacent if Ty N Ty contains at least two points. Let F = {z €
C:|z—3%] < i} If 2 ¢ Z+ E, then the two tiles V(0), V(1) € V(z) are adjacent to each
other, and hence the Voronoi region 7'(0) = 7'(1) in the cylinder is not simply connected. If
z € Z+ E\R, then T(\), A\ € A(z), are simply connected, and 7 (z) is a tiling of the cylinder by
convex polygons. It is called the helical Voronoi tiling generated by z.
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Suppose that z € Z + E N H, and fix a lattice A(z). A dual of a Voronoi diagram is called a
Delaunay diagram. The line segment £(\, \') joining A\, \" € A(z) is called a Delaunay edge if V(\)
is adjacent to V(). Two distinct Delaunay edges may have a point in common only at their
endpoint. A connected component of the complement C\ |J£4(\, \'), where £(\, \') runs through
all the Delaunay edges, is called a Delaunay polygon. Each Delaunay polygon is inscribed in a
circle. That is, a finite subset A’(z) C A(z) is the set of the corners of a Delaunay polygon if and
only if there exists a disk D such that 9D N A(z) = A’'(z) and int(D) N A(z) = 0.

For distinct 21, 29, 23 € C, let A(21, 29, 23) be a triangle in this order of vertices and

4(21a22a23) = Arg <Zl - z2> )

zZ3 — 292

where —m < Arg(z) < m denotes the principal argument of z # 0. If A(z1, 29, 23) is a triangle
in this order of vertices with counterclockwise, then interior angles of A(z1, 22, z3) are given by
L(z3,21,29), £(21, 22, 23) and Z(z2, 23, z1), and they are all positive.

Lemma 2.3. Let z € Z+ ENH. Let m,n > 0 be integers, and suppose that (0, A\, A + X, \)

is a quadrilateral in C in this order of vertices, where A = mz —a, N = nz —b € A(z) for some
a,b € Z. Suppose that Re(\) - Re(N') > 0 and

Z(N,0,0), ZV, A+ N, 0) > 0,
Then we have Z(N,0,A) + Z(N, A+ N, \) < 7.

Proof. By the assumption, Z(\,0,\) < 7/2. Moreover, we have Z(X,0,\) = Z(N, X+ N, )\).
Hence, the proof is clear. ]

Lemma 2.4. Let z € Z+ ENH. For the tiling V(z) of the plane C, there are A = mz — a, N =
nz — b € A(z) with integers m,n > 0, such that the followings hold.

(i) The tile V(0) is adjacent to V(X) and V(X),
(i1)) M, N\ N /X € H, mb—na =1, Re(\) <0 < Re()), and
(iii) Either
(a) V(z) is a rectangular tiling, or

(b) V(z) is a hexagonal tiling such that V(0) is adjacent to V(A + ).

Proof. Since the site set A(z) is a lattice of C, its Delaunay diagram is also a periodic tiling with
respect to the translation group A(z). Since V(A), A € A(z) is a bounded polygon, there exists
A # X such that the tile V/(0) is adjacent to V(A) and V()\).

Suppose that V(0) is adjacent to V/(A\), V(X), A # X. Then we have either:

1. the quadrilateral (0, A\, A + X', \) is a Delaunay polygon, or

2. L(0, A+ X) or £(\, X)) is a Delaunay edge.

In the case 1, the quadrilateral (J(0, A\, A + X', \') is a parallelogram which is inscribed in a
circle. Hence it is a rectangle. By Lemma 2.3, Re(\') - Re(\) < 0. Denote by A = mz — a,
N = nz —b. We may assume that m,n > 0 without loss of generality, which implies that
A, A € H. Since A(z) = NZ+ N'Z, we have |mb—na| = 1. We may further assume that \'/\ € H,
Re(X\) < 0 < Re(A\) and mb — na = 1.

In the case 2, we may assume without generality that A\, \', /A € H, and that V' (0) is adjacent
to V(A),V(N),V(A+ X). Denote by A = mz —a, N = nz —b. Then we have m,n > 0, and
mb —na = 1 since A(z) = AZ + NZ. Since A(0, \, A + X') is a Delaunay polygon, X" lies outside
the circumscribing circle of A(0, A\, A\ + X'), whereas (0, A\, A + X/, \) is a parallelogram. This
implies that Z(\,0,\) > /2, and hence Re(\') < 0 < Re(\). O

In the phyllotaxis theory, the pair m,n > 0 is called an opposed parastichy pair if V(0) is
adjacent to V(mz —a),V(nz —b), and Re(nz — b) - Re(mz — a) < 0, for some a,b € Z.
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2.2 Parastichy transitions of helical Voronoi tilings

In this section, we rewrite that the bifurcation structure [12, Chapter 3] of the helical Voronoi
tilings. First, we describe the set of generators z € Z 4+ E N H which produce rectangular helical
Voronoi tilings.

Let z € Z+ ENH, and suppose that V(z) is a rectangular tiling of C such that the tile V' (0)
is adjacent to V(X),V()\), where A = mz —a, X' = nz —b, myn > 0, mb— na = 1. Then the
angle Z(X\,0, ) is a right angle, and z lies on the circle

C<a,b> :{ZE(C: nz=b eiR}. (2.2.1)
m n mz —a

The circle C(%, %) is symmetric with respect to the real axis, and passes through the points
a/m,b/n € R. This, together with the assumption that mb — na > 0, implies that a/m <
Re(z) < b/n.

Lemma 2.5. Let z € Z+ ENH. Suppose that V(z) is a hexagonal tiling such that the tile V (0)
is adjacent to V(N\),V(N), V(A + X), where A\ = mz —a, N =nz—>b, myn >0, mb—na = 1.
Then z lies inside the circle (2.2.1). In particular, we have a/m < Re(z) < b/n.

Proof. Let 2 = z + iy, y > 0. Fix x, and consider A = A\(2) = mz —a, N = \(2) = nz — b as
functions of y. Since A(z),A'(z) € H and Re(N(z)) < 0 < Re(A(z)), the angle Z(X,0,A) is a
decreasing function of y > 0. Since £(0, A + \’) is a Delaunay edge, we have Z(\N,0,\) > 7/2.
This implies that z lies inside the circle (2.2.1). O

Now suppose that |[Re(z)| < % for simplicity. For each pair of relatively prime integers m,n > 0
with (m,n) # (1,1), there exist a,b € Z such that mb—na =1 and —1 < £ < 2 <1 Denote by
A= A(2) :==mz—a, X = XN(2) := nz—b. Lemma 2.5 implies that for z € E with [Re(z)| < 1, V(z)
is a hexagonal tiling such that V(0) is adjacent to V' (\), V(X), V(A + X) and A, N, A + X € H,
if and only if z lies inside the circle C(%, %) and outside C'(.%, Tffbf;) and C (nii?w %), that is,
z € Hy, , where

/ / !/
Hppp o= {z €H: [Re(z)| < %AX € iH, ¥ Aix € —iH}.

Figure 2.1 is the set of z € H N {|Re(z)| < 3} that generate rectangular tilings of C (and
C/Z). In the figure, (m,n) denotes the half-circle C(2, £) N H, where a,b are integers such that
mb—nazland—%<%<%<%.

Figure 2.2 shows the parastichy transition of helical Voronoi tilings with the fixed divergence
angle § = 277, 7 = 1+2\/g’ from a hexagonal tiling with opposed parastichy pairs {3,5}, {5,8},
through a rectangular tiling with an opposed parastichy pair {5,8}, to a hexagonal tiling with
opposed parastichy pairs {5, 8}, {8, 13}.

2.3 Parastichies and continued fraction expansions

In this section, we recall the continued fractions [22] and we show that opposed parastichy pairs
of helical Voronoi tilings are drived by the continued fraction approximations of the divergence
x = Re(z).

For z € R, let

x:a0+—1:[a07a17a27"']7 GOEZ7 CLiEZ.’., 221
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Figure 2.1: The set of generators z € H of rectangular tilings, consisting of half circles. For each
pair of relatively prime integers m,n > 0, there exist a,b € Z such that 0 < a/m < b/n < 1
and mb — na = 1. The half circle with the endpoints a/m,b/n, denoted by (m,n), is the set of
generators z € H, |Re(z)| < %, of rectangular tilings with an opposed parastichy pair {m,n}.

© @7

Figure 2.2: Helical Voronoi tilings generated by z = (7 — 2) 4 iy, where 7 = is the golden
section. The Fibonacci parastichy numbers are decreasing functions of y > 0. (a) y = 0.056,
hexagonal tiling with opposed parastichy pairs {2,3}, {5,3}. (b) y = 0.0296149 - - - | rectangular
tiling with an opposed parastichy pair {5,3}. (c) y = 0.02, hexagonal tiling with opposed paras-
tichy pairs {5,3}, {5,8}. (d) y = 0.0112083- - -, rectangular tiling with an opposed parastichy
pair {5, 8}.

1+V5
2
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be a continued fraction expansion of x, where Z, denotes the set of positive integers. Define
the following sequences. {p;};>—1, p—1 = 1, po = ao, p1 = apa1 + 1, pj = pj—2 +a;pj-1, j > 2;
{Qj}jz—h qd-1 = 07 4o = 17 q1 = a1, 45 = 42 + ajiqi—1, .] > 2. Then

Pj 1

72&0"'—1:[&0’&1’@2"" 7aj]v ]20
4qj ar T+ —— 71 —

L

<

is called a principal convergent of x. Let p;r = pj—1 + kp; and gjr = qj—1 + kqj, 7 = 0,
0<k<ajs1. Then

—— = qag + T :[ao,al,ag,.--,aj,k],ij,0<k<aj+1

1

.4 1 T
4Gt E

is called an intermediate converegent of z. If x € Q, there are only finitely many convergents of
z. Note that pjo =pj—1, ¢j,0 = ¢j—1, Pjaj11 = Pj+1s Giajo1 = Gj+1-

Lemma 2.6. Let x € R\Q. Suppose that a/m, b/n be irreducible fractions such that a/m < x <
b/n, mb—mna = 1. Then a/m, b/n are principal or intermediate convergents of z, at least one of
which is principal.

Proof. This is a well-known result of the theory of numbers. For example, see Theorem 2.5,
Theorem 2.6, the first part of Theorem 2.8 and Problem 2 (pp.153) in [68]. O

In the elementary numbers theory, a pair of rational numbers a/m,b/n is called a pair of
convergents of x € R if |bm — an| = 1 and either a/m < z < b/n or b/n < x < a/m. It is known
that if a/m,b/n is a pair of convergents of x, then either a = p;, m = q;, b = p; , m = ¢; with
Jj even, or a = pj, m = gk, b=pj, n=q; with j odd, and 0 < k < a;4;.

Lemma 2.7. Let z = z + iy € Z+ ENH, and suppose that V(z) is a hexagonal tiling such
that V(0) is adjacent to V(N),V(N),V( A+ X), where A\ = mz —a, N =nz—>b, myn > 0 and
mb—na = 1. Then a/m,b/n are principal or intermediate convergents of x, at least one of which
s principal.

Proof. We have mb—na =1, and a/m < x < b/n by Lemma 2.5. Hence, a/m,b/n are a pair of
convergents of x. O

2.4 Shape limit of rectangular helical Voronoi tilings

Fix an irrational number z such that |z| < 3, and define the sequences a;, ¢; and g;z, j > 0,
0 < k < ajt1, in Section 2.3. For each j > 0 and 0 < k < aj11, let ajr/mj, < bji/njr be a

Gk Dik )
mjg’ N/’
There exists a unique y;; > 0 such that z;, := x +iy;r € Cjr(x). Let A\jr = mjrzjr — )k,
A;’k = n,; 1%k — bj k. The ratio

pair of convergents of x such that {m;,n;r} = {g;,q;r}. Denote by C;(z) = C(

N
Rj,k(x) = )\L’k € iR
gk

is called a shape parameter of the tiling V(z; ). It is defined as the aspect ratio, or the modulus,
of the Delaunay polygon (0, Ajx, Ajx + A}, A 1), which is the same as that of the rectangular
tile T(0) in 7 (2 k)-

Denote by (§) € (—1/2,1/2] a fractional part of £ € R, such that [¢] := & — (§) is an integer
which is the nearest to . We have (xm; ) = amj, — a;r = Re(\jr), (xnr) = anjr — bjr =

Re( ;k;)
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 35k(TG5k) > /2
g5 {zg;)
Proof. Since X'/ € iR, we have

Lemma 2.8. R;;(z) =1 (

/

A
Akl - Re() = (mjpr — ajk)(njpe = bjx) + mkng ks = 0.
So we have
yin= (- (mj — ax)(nyew — bi) | 2
” M kT ) ’
My kT — Gjf
Nkl = (mype — aji)? +m3 pys, = —2—25,
TL]’]{;
and hence / ) i
Im()\j’k _ Yk _ ( k(i kT = bjr) > / .
k™ Nkl k(Mg kT — ajk)

O]

Suppose that x is a quadratic irrational. Then it has a periodic continued fraction expansion

x = lag,a1,az,...]

= [a0>a17"'7aj07b17"' abd]

:[ao,al,...,ajo,bl,...,bd,bl,--- ,bd,...].

We may assume that jg, d are even, by choosing bigger ones if necessary. For each 1 < s < d, let
ws = [bs,...,bq,b1,...,bs_1] be a purely periodic continued fraction, and hs(r) = 22 — asz — s €
Q[z] a quadratic polynomial such that hs(ws) = 0. Recall that the conjugate of ws is written as
whi=—1/[bs—1,...,b1,bq,-..,bs], that is, we have hy(w.) = 0, see [19].

Let Q(z) := Q{Rjr(x)};r) be the limit set, i.e., the set of the accumulation points, of
{Rj (@) }jik-

Theorem 2.9. If x is a quadratic irrational, the limit set Q(x) is written as

Qz) = {—ihsﬂ(k)(*”s/2 1<s<d1<k< bs}.

In particular, it is a finite set.

Proof. By using the continued fractions, we have

(]]l = [k:,aj,aj_l,...,al], —M

= [CL'+1 —k,a-+2,a'+3,...] (241)
qj <CUC]j> J J J

for j > 0,0 <k <aji1. As j — 400, they tend to the periodic sequence of continued fractions

[k,bs, - .,bl,bd, - .,b5+1] and [b5+1 — k,bs+2,. . .,bd,bl, - .,b5+1].

However, we have

[kabsa o 7bl)bd> .. '7b5+1] . [bs-i-l - kubs+27 .. '7bdubl) .- '7b8+1]
= (k — wip1)(=k + wst1)
- _hs+1(k)

for 0 < s <d, 0 <k <bgyy. This completes the proof. O
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In the number theory of phyllotaxis [10], it is known that the most common divergences = are
the quadratic irrationals such that a; = 1 for sufficiently large j.

Corollary 2.10. Let x be a quadratic irrational such that aj = 1 for sufficiently large j. Then
Q(z) = {i}.

Proof. The golden section has the purely periodic continued fraction expansion 7 = [1,1,...]
[1,1,1], and it is a root of a quadratic polynomial h(z) = 22 — x — 1. Thus we have —h(1) =
and hence Q(z) = {i}.

O

In Figure 2.2 (b) and (d), the shape of the rectangle tiles is not the square because R3 1(2—7) =
(0.9853---)iand R4 1(2—7) = (0.9944 - - - )i. The ratio R;1(2—7) is close to i for sufficiently large
j. That is, this implies that the shape of the rectangle tiles with a fixed divergence x = 7 — 2, as
y — 0, tend to the square.

Figure 2.3 shows helical Voronoi tilings generated by z = (5%/5) +iy. The parastichy numbers
are the Lucas numbers 1,3,4,7,11,18,---, and these are decreasing functions of y > 0. Since

% is a quadratic irrational which is a linearity equivalent of the golden section, the limit set

is Q(5J56/5) = {i}, that is, the limit shape of rectangle tiles is the square.

Figure 2.4 shows helical Voronoi tilings generated by z = (v/2 + 1) +1iy. v/2 + 1 is called the
silver mean, and its continued faction expansion is given by v2 + 1 = [2,2,2,---]. The silver
parastichy numbers 1,2,5,7,12,19,--- are decreasing function of y > 0. The limit set is given
by Q(v2+1) = {i,iv/2,i/v/2}. That is, the limit shapes of the rectangle tiles are the square and

the rectangle with the aspect ratio 1 : v/2.
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(0) |- @)\ L8

Figure 2.3: Helical Voronoi tilings generated by z = (5‘5—6/5) + iy, (a) y = 0.056, hexagonal tiling
with opposed parastichy pairs {1,3}, {4,3}. (b) y = 0.0387664 - - -, rectangular tiling with an
opposed parastichy pair {4,3}. (c¢) y = 0.02, hexagonal tiling with opposed parastichy pairs
{4,7}, {4,3}. (d) y = 0.0156848 - - -, rectangular tiling with an opposed parastichy pair {4, 7}.
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(0) |2 (@)

Figure 2.4: Helical Voronoi tilings generated by z = (v/2 4 1) + iy, (a) y = 0.056, hexagonal
tiling with opposed parastichy pairs {2,3}, {2,5}. (b) y = 0.0349189 - - - | rectangular tiling with
an opposed parastichy pair {2,5}. (c) y = 0.02, hexagonal tiling with opposed parastichy pairs
{2,5}, {7,5}. (d) y = 0.0142855 - - -, rectangular tiling with an opposed parastichy pair {7,5}.
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Part 11

Voronoi spiral tilings
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Chapter 3
Voronoi spiral tilings

3.1 Voronoi multiple tilings for spiral lattices

In this section, we consider a Voronoi multiple tiling as a tiling of a covering space of the punctured
plane C* = C\{0}.

Let C, := C/27viZ be a cylinder, where v # 0 is an integer. By the exponential function
exp : C,, — C* which maps w+27wviZ to z = €, C, is a covering space of degree |v| of C*. Let M,
be a covering space of C* of degree |v| such that the exponential function is an isomorphism of the
additive group C, onto the multiplicative group M,. By the canonical projection p : M, — C*,
the Euclidean metric on C* is induced into M, so that p is a local isometry. Thus M, is a metric
space with the distance function

1
dist(Co, C1) = inf{/o ¢ ()] dt = ¢ : [0,1] — My, $(0) = Co, d(1) = G},

Co0,C1 € M,. For ( € M,, denote by ||C|| := |p(¢)|. Let arg(¢) € (—|mv|, |wv|] be an argument of
¢ € M,. A tiling of M, is called a multiple tiling of multiplicity |v].

Let U :={( € M, : —w < arg(¢) < 7} C M,. Let s : C\R_ — U be a continuous map such
that pos =id and s(1) =1, where R_ = {z € R: 2z < 0}. If ( € U, p(({) is often identified with
¢. For ¢ € M,, U( is a neighborhood of ¢ which is isometric to C\R_. For two points {y, (1 € M,
with ¢; € U(y, we can define a straight line segment ¢({y, (1) C M, joining (o, (3.

Let ( =rel? € M, with 0 <r < 1and 0 < || < |rv|. Let S = {¢’},ez be a spiral sequence of
M, generated by a single element ¢ € M,. Note that, in the complete metric space M, = M,U{0},
the origin is an accumulation point of S. Suppose that

SNHy #0, (3.1.1)

where Hy := s({z € C : Im(z) > 0}) is an upper half-plane embedded in M,. Note that the
condition (3.1.1) is independent of r, see Lemma 3.5. Let

T; =T(¢7,8) :={€ € M, : dist(&,¢7) < dist (€, ¢F),Vk # j} (3.1.2)

be the Voronoi region for the site ¢/, j € Z. By the assumption (3.1.1), it is not difficult to see
that the following conditions hold for j, k € Z.

(i) T; C H¢?, where H = s({z € C: Re(z) > 3}).
(ii) If ¢k ¢ U¢I, then Ty NT}, = 0.
(iii) 7j is a bounded polygon.
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Thus we obtain a polygonal tiling 7 := {7} }jez of M,, which is called a Voronoi spiral multiple
tiling with multiplicity |v|.

Two distinct Voronoi regions T}, T}, are called adjacent if the intersection T7;N7T}, C M, contains
at least two points. In fact, if two distinct polygonal regions T}, T} are adjacent, T N T}, is a line
segment of positive length. If Tj is adjacent to T}, the multiplicative symmetry of S implies that
Tj; is adjacent to T)jqy, for all j € Z. In the phyllotaxis theory, the pair {m,n} of positive integers
is called the opposed parastichy pair if Tp is adjacent to T, T,, and arg(¢™) arg(¢™) < 0; the pair
{m,n} is called the non-opposed parastichy pair if Ty is adjacent to T,,, T}, and arg(¢{™) arg(¢™) >
0.

A dual of a Voronoi diagram is called a Delaunay diagram. If T} is adjacent to T}, the line
segment £(¢7,¢*) € U/ joining the sites ¢ and ¢* is called a Delaunay edge. Denote the set
of Delaunay edges for the site set S by £. A Delaunay polygon is a connected component of
the complement in M, of the union of the Delaunay edges. An important property is that two
Delaunay edges have a point in common only at their endpoint. Thus a line segment is a side
of a Delaunay polygon if and only if it is a Delaunay edge. A finite set S’ C S is equal to the
set of the corners of a Delaunay polygon if and only if there exists a disk D C M, such that
DN S =S and int(D) NS = (). Hence each Delaunay polygon is inscribed in a circle.

For distinct a1, a9, a3 € C, let

Z(ay,az,a3) = Arg (al _ a2> ,

a3 — az

where —7m < Arg(z) < 7 denotes the principal argument of z € C*. For distinct oy, ae, a3 € M,
with aq, a9, 3 € Uay NUas NUas, let

Llag,ag,a3) == Z(p(ar), plaz), p(as)).

Lemma 3.1. Let ¢ = rel € M, with 0 < r < 1, and suppose the condition (3.1.1). Let
T :={T}}jez be a Voronoi tiling of M, with the site set S = {(?};cz. Letj # k € Z, and suppose
that (¥ € U7, Then the following conditions are mutually equivalent.

(i) The Voronoi regions T}, Ty, are adjacent.
(ii) The line segment £(¢7,C*) is a Delaunay edge.
(iii) There exists a disk D C U¢? such that 9D NS = {¢7,¢*} and int(D) N S = 0.
(iv) For any ¢, (2 € U NUCK, we have
2(¢,¢n )+ £ ¢ ) < (3.1.3)
whenever Z(¢7, ¢, ¢F) >0 and £(¢F,¢%2,¢7) > 0.

Proof. (i) < (ii): Obvious.

(iii) < (iv): Obvious.

(ii) = (iv): A Delaunay edge £(¢7,¢*) is a side of two Delaunay polygons, say Wi, Wy. Let
¢ & {¢7,¢*} be a corner of Wy. We may suppose that Z(¢7, ¢%, ¢¥) > 0 without loss of generality.
Any ¢ € U¢ NUCF with £(¢7,¢%2,¢F) < 0 is out of the circumscribed circle of Wy, so we have
Z(¢7,¢%,¢F) + £(¢k,¢2,¢7) < . For any ¢ € U nUCF with £(¢7,¢",¢*) > 0, we have
Z(¢7, ¢, ¢FY < £(¢7, ¢, ¢F). Thus we obtain 3.1.3.

(iv) = (ii): Suppose that £(¢7,¢*) is not a Delaunay edge. If ¢/, (¥ are corners of a Delaunay
polygon W, then there exist ¢*', (% ¢ {¢7, ¢*} which are corners of W, such that £(¢7, ¢, ¢*F) > 0
and Z(¢*,¢%,¢7) > 0. In this case we have

2, ¢, XY+ 2(CF ¢ ) =7
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since W is inscribed in a circle.

If ¢/, ¢¥ are not corners of a same Delaunay polygon, then the line segment £(¢7, ¢*) intersects
some Delaunay edge £(¢*,¢*2). We may suppose that Z(¢™, ¢*, (%), £(¢2,¢7,¢") > 0 without
loss of generality. This implies that

2(¢7,¢M¢h), £(¢h ¢ ) > 0.
Since we have already shown that (ii) = (iv), we obtain
2(¢, R )+ £(CR ¢ <,
and hence Z(¢7, ¢, ¢F) + £(¢*,¢2,¢9) > . This completes the proof. O

Lemma 3.2. Let ¢ = el € M, with 0 < r < 1. Let m,n > 0 be positive integers. Sup-
pose that ("™, (" € U, and T(C™, ™", ¢, 1) is a quadrilateral in this order of vertices. If
arg(¢™) arg(¢™) > 0, then we have

|Z(¢™, ¢ CM |+ |1 Z4(¢ 1, ™) < (3.1.4)

Proof. We may assume that 0 < arg(¢"™), arg(¢") < m without loss of generality, and we assume
that Z(¢™, ™™, ¢, Z(¢™,1,¢™) > 0. We have

< Z(2,1,™) + £(0,1,¢™)
< Z(2,1,e7™) + £(0,1,e™%) = 7.

O]

Lemma 3.3. Let ¢ = re'? € M, and suppose that 0 < r < 1, 0 < |[§] < |7v| and (3.1.1) for
S ={¢}jen. Let T := {Tj};ez be a Voronoi tiling of M, with the site set S. Then there exist
m,n > 0 such that {m,n} is an opposed parastichy pair of T, and To N Typin # 0. If Ty is
adjacent to Tiy1n, then it is a hexagon; if Ty is not adjacent to Tyyn, then it is a quadrilateral.

Proof. If Ty is adjacent to T), for some m, then by the multiplicative symmetry of S, Ty is
also adjacent to T_,,. A bounded polygon Tj has at least three sides, so there exists n > 0,
n # m, such that Ty is also adjacent to T4,. The Delaunay diagram contains the Delaunay
edges £(¢7,¢IH™), 0(¢7,¢9*™), § € Z, which form a lattice. In the quadrilateral O(1,¢™, (™, (™)
surrounded by Delaunay edges, there are three possibilities.

(i) O(1,¢™, ™™ (™) is a Delaunay polygon,
(i) £(1,{™*™) is a Delaunay edge and the triangles
AT, ¢, AL
are Delaunay polygons, or
(iii) £(¢™, (™) is a Delaunay edge and the triangles
A, ¢ 1), AT
are Delaunay polygons.
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(a) (b)

Figure 3.1: (a) A Voronoi spiral tiling with an opposed parastichy pair {7,4}. The genera-
tor ¢ = (0.9011---)exp(27i - (5 + v/5)/10) is marked x; in Figure 3.4. (b) A Voronoi spiral
multiple tiling of multiplicity v = 2, with an opposed parastichy pair {7,4}. The generator
¢ = (0.7730 - - - ) exp(2mi/v/5) is marked % in Figure 3.4.

If arg(¢™) arg(¢™) > 0, we have (3.1.4) by Lemma 3.2, and so £(¢", (™) is a Delaunay edge. This
implies that if £(1,¢™*™) is a Delaunay edge, we have arg(¢™)arg(¢™) < 0, and so {m,n} is an
opposed parastichy pair of 7, where Tj is a hexagon which is adjacent to Ty, Tien and Tl (54 p)-

If O(1,¢™, ¢™*™ (™) is a Delaunay polygon, then we have arg(¢™) arg(¢™) < 0 again, and so
{m,n} is an opposed parastichy pair of 7. If this is the case, the intersection Ty N T}, 4, consists
of a point which is the center of the circumscribed circle of CI(1,¢™, (™1™, (™).

If £(¢™,¢") is a Delaunay edge, then Tp is adjacent to T4 (m_p). If we denote by m' =
min(m, n), n’ = [m — n|, the tile Tp is a hexagon which is adjacent to Th,,, Ty and T (4 r)-
This completes the proof. ]

Figure 3.1 shows two examples of Voronoi spiral (multiple) tilings with an opposed parastichy
pair {4,7}. Their generators are marked in Figure 3.4.

3.2 Parastichy transitions of Voronoi spiral tilings

Lemma 3.4. Let ¢ = rel’ € M,, and suppose that 0 < r < 1, 0 < |0 < |7v| and (3.1.1).
Let {m,n} be an opposed parastichy pair of a Voronoi tiling T := {T}};cz of M, generated by
S={{Yjez Leta=[22], b=[22]. Then %, are a pair of convergents of 5.

m’n

Proof. Since {m,n} is an opposed parastichy pair, we may suppose that —7 < arg({") < 0 <

arg(¢™) < m, without loss of generality. Since arg(¢"™) = nf — 2wbv, arg(¢") = mb — 2mwav, we

: a 6 b
obtain < 55 < -

The sides of the quadrilateral Wy = 0(1,¢(™, ™1™ (") are Delaunay edges. By the multi-
plicative symmetry of S, the family of quadrilaterals

{CjWO}jEZ = {D(C]> Cj+m7 Cj—&-m—i—n’ Cj+n)}j€Z
is a tiling of M,. Let

& :=logr+i0 € log(¢),
Em :=mlogr +i(mf — 2mav) € log(¢™),
&n i=nlogr +1i(nf — 2mbv) € log(¢").

Let W{ be a connected component of log(Wp) C C which has corners 0, &, & + &, §n- Since M,
is connected, £ is contained in the lattice £,Z + £,7Z in C and we have £ = k&, + ko2&, for some
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ki, ks € Z. Hence m,n are relatively prime, and we have
(EmZ + EZ) NiR = {k(n&y, — m&y) trez = 2mv(mb — na)iZ.

However, {(ki&m + k2&n)W) mod 2vumi}y, k,ez is a tiling of the cylinder C, = C/2vmiZ by the
assumption. Thus we obtain mb — na = 1. O

A (principal or intermediate) convergent - of z = % is called admissible if

0 a

0<
2ty m

: (3.2.1)

‘ 1

2mu

ie., 0 < |mb —2mrav| < m. Let Hy := s({z € C:Im(z) > 0}), H- := s({z € C: Im(z) < 0}) be
half-planes in M,,.

Lemma 3.5. Let v # 0 be an integer. For 0 < |0 < |mv|, the following conditions are mutually
equivalent.

(i) 0/2mwv has a pair of convergents that are both admissible.
(ii) For any r >0, we have SN Hy # 0, where S = {('}jez, ¢ = rel? e M,,.
(iii) kO & 2mvZ for k =1,...,|2v|.
Proof. 1If % is an irrational number, then it is easy to see that all of the conditions (i), (ii) and

(iii) hold.
If % is a rational number, there exists a pair of convergents - < % of 6/2mv such that

% = T‘Zf; If v > 0, we see the equivalence: (3.2.1) & mf — 2wav < 7, —7 < nf — 2wbv &
m+n>2v& % ¢ 7 for 0 < k < 2v. The case v < 0 is similarly shown. O

Let mog = min{m > 0: ™ € H,}, ng = min{n > 0: (" € H_}, ap = [22%], by = [ﬂgﬂ

2mv 2
Then % < % jg g pair of convergents of z = —29 that are both admissible.
mo 10 ™

Lemma 3.6. Let v # 0 be an integer. Let ¢ = rel € M, with 0 < r < 1 and 0 < |0] < |mv|,
and assume the condition (3.1.1). Let T := {T;}jez be a Voronoi tiling of M, generated by
S ={}Yjen. If r is small, Ty is adjacent to Timy, Tin, and T4 (mo+no)-

Proof. If j > 0 and ¢/ € U¢™° U U, then the minimality of m and the multiplicative symmetry
of S imply that j > mg. Since r is small, we have

2™, 1) < Z(p(C™),0,1) +e,
where € > 0 is a sufficiently small. If k < 0 and ¢¥ € U N U¢™, then we have
[£(1,¢F M) = 12(CH 1L, < e
because ||¢7F||, [|¢™0 || are small. Therefore, we have
Z(¢™,¢7, 1) + £(1,¢5,¢M0) < £(p(¢™0),0,1) +2¢ <

for any ¢/,¢F € U N U™ with Z£(¢™0,¢9,1), £(1,¢%,¢™) > 0. By Lemma 3.1, £(1,(™) is a
Delaunay edge, and hence Ty is adjacent to T,,,. The argument for the Delaunay edge ¢(1,{™)
is similar.

There are three possibilities:

(i) £(1,¢™0*m0) is an Delaunay edge,

(ii) £(¢™0, (™) is an Delaunay edge, or
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(iii) O(1, ™o, (motno ("0) is a Delaunay polygon.

By the minimality condition of mg, ng and the multiplicative symmetry of S, we have (™0 ¢ H ("0
or (" ¢ H_(™ which are mutually equivalent. Thus [J(¢™®,0,¢"0, 1) and OJ(1, ™0, (™Mot (no)
are concave quadrilaterals, and we have

Z(1,¢™mo,(motno) (gm0t (M0 1) < .
Hence £(1,¢™0t0) is a Delaunay edge. O
We fix 0, 0 < |0 < |7v|, and denote by ((r) :=re'? € M,, 0 < r < 1. Let S(r) := {{(r)’}jez.
Let T(r) := {T}(r)}jez be the corresponding Voronoi tiling. Let
A={0<r<1:Ty(r)is a quadrilateral}.

Lemma 3.7. Fiz v and 0, and suppose that 0 < |0 < |mv|. Let ( = pe?, 0 < p < 1.
Suppose that the tiling T (p) has an opposed parastichy pair {m,n} and a Delaunay polygon
O(C(p)™, C(p)™ ™ C(p)™,1). Then there exists a small € > 0 such that the followings hold.

(i) Forr € (p,p+e¢), the tile To(r) in T (r) is adjacent to Ty (r), Tun(r) and Ty (myn) (7).
(i) Forr € (p—e,p), the tile To(r) in T (r) is adjacent to Ty (1), Ten(r) and T (py_p(r).

Proof. We may suppose that —m < arg(¢(p)") < 0 < arg(¢(p)™) < m without loss of generality.
Since Lemma 3.1 (iv) is an open condition, ¢(1,{(r)™) and ¢(1,{(r)"™) are Delaunay edges if r is
close to p. The sum of the angles

¢(r) = Z(L,¢(r)™, ¢(r)™ ™) + Z(¢(r)™ ", ¢(r)", 1) (3.2.2)
= Z(¢(r)™", 1,¢(r)") + Z(¢(r)™, 1,¢(r) ")

is a decreasing function of r. Therefore, for p < r < p+ € with € > 0 small, we have ¢(r) <
#(p) = m, and hence £(1,¢(r)™"") is a Delaunay edge. For p — e < r < p, we have ¢(r) > m, and
so £(¢(r)™,((r)™) is a Delaunay edge. 0

In Lemma 3.7, the opposed parastichy pair {m,n} is called an extension of the opposed
parastichy pair {|m — n|,min(m,n)}, and the pair {|m — n|, min(m,n)} is called a contraction of
{m,n}. Lemma 3.7 implies that A is a discrete subset of the open interval (0, 1).

Lemma 3.8. Let 0 < p < 1, and suppose that the tiling T (p) has opposed parastichy pairs {m,n}
and {m + n,n}. Then there exists p' € (p,1) such that the followings hold.

(i) For each r € [p,p'), the tiling T (r) has opposed parastichy pairs {m,n} and {m +mn,n}.
(ii) The tiling T (p') has an opposed parastichy pair {m + n,n}, and Ty(p') is a quadrilateral.
Proof. Without loss of generality we may assume that
—m < arg(¢(p)") < 0 <arg(C(p)™*™) < arg(¢(p)™) <m
and Z(¢(p)™, C(p)™™, C(p)"), £(¢(p)", 1,((p)™) > 0. Let
o = sup{r > p: £(1L,C(r)) € (), § = mymm+n},
where £(r) denotes the set of the Delaunay edges for the site set S(r). Since
2™, ¢y ¢ <o,
there exist 7’ € (p, 1) such that
Z(Cr)™, <y L)) < 0,

where ¢(r/)™*" lands on the line segment £(1,{(r')™). Then, £(1,¢(r")™) is not a Delaunay edge,
and we obtain p’ < 1.
There are three possibilities:
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(i) £(1,<()™) & E(P),

(i) £(1,¢(p)™ ™) € E(P), 0

(i) £(1,¢(p")") & E(P)-
)

Since 7 (p) has an opposed parastichy pair by Lemma 3.3, we have ¢(1,{(p')") € E(p'). Since
the sum of the angles ¢(r) given in (3.2.2) is a decreasing function of 0 < r < 1, we have
o(p') < ¢(p) < m, and hence £(1,{(p")™*") € E(p'). Therefore, we have £(1,{(p)™) & E(p').
Hence (1, C(p")™ ™, ((p)™ 27, ((p)") is a Delaunay polygon. O

The following is a converse of Lemma 3.4.

Proposition 3.9. Fiz v, 6 such that 0 < |0] < |7v|. Let a/m < b/n be a pair of convergents of
0/2mv that are both admissible. Then there exists p € (0,1) such that Ty(p) is adjacent to Ty (p),
T:I:n(p) and Ti(ern) (p)

If, in addition, (a—b)/(m—n) is an admissible convergent of 6 /2mv, then there exists p' € (0, p)
such that T (p') is a quadrilateral tiling with an opposed parastichy pair {m,n}.

Proof. It is known in elementary number theory that a pair of convergents of x is written as a
pair p;/q;, pjk/qjr where j >0 and 0 < k < a;4;. Hence, an opposed parastichy pair is written
as {m,n} = {¢;,qjr} for some j < 0, 0 < k < aj41. The extension of {g;,q;x} is equal to
{aj: Gjes1} ik +1 <ajyi; {g5, ¢} i b =ajp.

Lemmas 3.6, 3.7 and 3.8 imply that the sequence of extensions of the opposed parastichy pairs
for 7(r), as 7 — 1, is written as the sequence of the pairs {g;,q;x}. Thus, for any admissible
pair p;/q;, pjk/q;k of convergents of 0/2mv, there exists r € (0,1) such that the tiling 7°(r) has
an opposed parastichy pair {g;, g;x}- O

Figure 3.2 shows the parastichy transition of Voronoi spiral tilings with the fixed divergence
angle § = 277, T = 1+T\/‘?’, from a hexagonal tiling with opposed parastichy pairs {3,5}, {5, 8},
through a quadrilateral tiling with an opposed parastichy pair {5, 8}, to a hexagonal tiling with
opposed parastichy pairs {5, 8}, {8, 13}.

3.3 Quadrilateral Voronoi spiral tilings

Let ¢ = re'? € M, with 0 < r < 1. Let m,n > 0 be relatively prime integers. If a Voronoi region
of a Voronoi tiling for the spiral sequence S = {¢’ }jez becomes a quadrilateral, then the four
points 1, (™, (™t and (" lie on a same circle in this order of vertices.

Let
(Zm o Zm—i—n)(zn o 1) Zm(zn o 1)2

\I’m,n(z> = (Zn _ Zm—l—n)(zm — 1) - Zn(zm - 1)2

be a rational function of one complex variable, and

Umno(r) == (1 —7")(1 - r")cos%gcos%g +(1+r")(14+r )sm%esm%e
m—-n m-+n

= (1 +7r""") cos 0 — (r"™ +1r")cos 6.

We have

\I/m,n(z) = \Ilm,n(l/z) = 1/\I]n,m(z)a wm,nﬂ(r) = 1/Jn,m,9(7“) = Tm+n¢m,n,9(1/r)~

Lemma 3.10. Let m,n be distinct positive integers. Let z = re? € C\R, and suppose that
z™ £ 1. The following conditions are mutually equivalent.
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(c) (d)

Figure 3.2: Voronoi spiral tilings generated by ¢ = re'? with the fixed divergence angle 6 = 277,
T= % As r increases, the Fibonacci parastichy numbers also increase. (a) r = 0.9, hexagonal
tiling with opposed parastichy pairs {3,5}, {5,8}. (b) r = 0.92943 .- -, quadrilateral tiling with
an opposed parastichy pair {5,8}. (c) r = 0.96, hexagonal tiling with opposed parastichy pairs
{5,8}, {8,13}. (d) r = 0.97328 - - - |, quadrilateral tiling with an opposed parastichy pair {13, 8}.
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(i) The four points 1, 2™, 2™t 2" form a quadrilateral (1, 2™, 2™ 2™) which is inscribed

in a circle, in this order of vertices.
(11) Upn(z) <O.
(i) Bommp(r) = 0.
Proof. (i) < (ii): The cross ratio of 1, 2™, 2™ 2™ is given as Wy, ,(2).

(i) < (iii): We have Rey/¥p,,(2) = Re(z 2 2=y = ||zz,‘n_T1|2 Ymom,0(T). O

3.3.1 Generators of quadrilateral Voronoi spiral tilings

In this section, we consider a set of generators ( which produce quadrilateral Voronoi spiral tilings
for each opposed parastichy pair.
Let I = (—m,m| be a half-open interval, and consider an injective map

mo no
bt R — T2, tmn(0) = (27r<2ﬂ>,27r<27r>> ,
where (z) € (—3, 3] denotes a fractional part of z € R, such that [z] := 2 — () € Z is an integer

which is the nearest to x. The image of ¢, 5, is a stripe in the square 1 2 written as

me(R) = U {(01,92) S IQ : n01 — 777,92 = 27["[)}.
[v]<(m+n)/2

Let A=A, UA_,

( 2)6[2:0<91<02+7T<7r},

A, = {(6:,6
A_ (91,92)612: 0<92<91+7T<7T}.

{
{
Then ¢y, ,(R) N A is a union of line segments written as
tmn(R)NA = U Unnvs o :=1{(01,62) € A :nb; — mby = 2mv}.
0<|v|<max(m,n)/2

Lemma 3.11. Let m,n > 0 be relatively prime integers, and 6 € R. Then the followings
conditions are mutually equivalent.

(1) tmn(0) € A.
(ii) (cos %50 cos 50)(sin 8 sin §60) < 0 and | cos 50 cos 50| > |sin 50 sin 56|.
(i1i) The equation V¥, n9(r) =0 has a (unique) solution r in (0,1).

Proof. (i) < (ii): Obvious.

(i) < (iii): Since (1 —r™)(1 — r™) is a decreasing function and (1 + r")(1 4 ™) is an increasing
function of 7, the Intermediate Value Theorem can be applied to ¢, ,, ¢ in the interval [0, 1], to
show the existence and the uniqueness of the solution r € (0,1). The converse is also obvious. [

Figure 3.3 shows the set ¢74(R) N (A U A_), consisting of six solid lines. It is a parameter
space for quadrilateral Voronoi spiral (multiple) tilings with an opposed parastichy pair {4, 7}.

Let By, = {z € D\R: Uy, ,(2) < 0}. Let By, p, ,, be the set of ¢ = rel € M,, 0 < r <1, such
that the Voronoi tiling 7 = {7} },ez of M, generated by S = {(’},cz is a quadrilateral tiling with
an opposed parastichy pair {m,n} and narg(¢")—marg(¢") = 2mv. Note that By, ., = Bpm, —o-
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v=-6 " -W‘—
v = —5 E
v=-4-"
v=-3_ :
04
v=-2 -21 .
v=-1 < %
v=0 - ~
v — Lo Il
— 2 ‘4"' ‘r" _4’ ‘r’ ’4“
v v=3 v=4 v=5 v=6

Figure 3.3: The set t74(R) N (A4 U A_), consisting of six solid lines, denotes the set of the
points (arg(¢7), arg(¢*)), where ¢ generates a quadrilateral (multiple) spiral tiling with an opposed
parastichy pair {4,7}. The dotted lines are the lines 46, — 70y = 27v, —6 < v < 6. On each
endpoint ¢74(6) of solid lines the rational number 6/27 is shown in the figure.

Theorem 3.12. Let m > n > 0 be relatively prime integers. Then we have

Bm,n = U p(Bm,n,v)-
0<|v|<m/2

Proof. If ¢ € By v, then the Delaunay polygon Ty = 0(1,¢™, (™1™, (™) is inscribed in a circle.
By Lemma 3.10, we see that fp, »(p(¢)) < 0, and hence p({) € By, . Thus we obtain B, , D
U0<|v\<m/2p(Bm,n,v)‘

Suppose that zg = roe? Byin, 0 <rg<1,0<6 <27 Let a,b be positive integers such
that 0 < a/m < b/n < 1 and mb —na = 1. Let v := n(%f} - m(%), a = [[g”—f]], b o= [[;—ﬁ]],
d:=abl —ab, 0 := 0+ 2rd, and ¢y = roe!’ € M,. Then we have v = mb — nd’ € Z,
0<6/2mv <1, and £ < % < % The rational numbers a/m, b/n are a pair of convergents
of #'/2mv that are both admissible. For v,6’ fixed, Proposition 3.9 implies the existence of
r such that {( = rel? e M, gives rise to a quadrilateral Voronoi tiling 7 with an opposed
parastichy pair {m,n}, and Lemma 3.11 implies the uniqueness of r such that ), , ¢ (1) = 0.
Since CI(1, ¢, ¢, (&) C M, is indeed inscribed in a circle, it is a Delaunay polygon, and (o
generates a quadrilateral Voronoi spiral multiple tiling. 0

Here we describe the details of the branches By, ,, ,. Let I, = (—|mv|, |mv|], and consider the

mappings
mb nd
tmnw P R— Ty X I, tmnw(0) = |27TU]<W), |27TU\<W> .
Let A, := AjUA;, A;r = {(91,92) cel,xI,:0<b0; <0+ <7T}, A; = {(91,92) el, x1I,:
0<0y<b6+m<m7},and £y, , , = {(01,02) € A, : nb — mby = 27v}.
Lemma 3.13. Let m > n > 0 be relatively prime integers and 0 < [v| < . Let a,b > 0
be integers such that 0 < - < % < 1 and bm — an = 1. Define the intervals I, n., C R as
follows. First, an endpoint of I, pn. 5 2”# The other endpoint of Iy n. 15 given as follows:
% if o] < 55 bmifv =5 —br if v = =% 7“2(‘;32?“) if 5 <v <% and 777(2(‘:;9;}71) if
—% <v<-—5. Then
Ny,

Lm,n,v’Im,n,fu . Im,n,v m,n,v
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Figure 3.4: The set By 4 of the generators consists of the arcs p(B74.,), v = £1,£2,£3, which
are branches of the real algebraic curve Rey/VU74(2z) = 0. A rational number z on the unit circle
denotes the point €. The marks A and 4 indicate the points z where W7 4(2) = 0 and —o0
respectively. The arc p(B74,1) connects the point e(=2/1 27 with e(-1/4)47  The arc p(B7.42)
connects the point /737 with —0.6776---, where r = 0.6776--- is a root of the equation
7(1—rT)(1 =) —4(1 +77)(1 +r*) = 0. The arc p(Br,43) connects the point e(/7) 37 with the
origin. The arc p(B74,—y) is a complex conjugate of p(B7.4.4), for each v = 1,2, 3.

is a homeomorphism. Moreover, there exists a real analytic function pmny @ Immny — R such
that the mapping
Pmmnuv - Im,n,v - Bm,n,vy SOm,n,v<9) = pm,n,v((g)ele

is @ homeomorphism.

Proof. First, we have tpno(2222) = (0,—22%). If [v| < %, we have me,v(%;b”) = (#v,0). If
v =5, we have iy, (br) = (m,0). If v = =%, we have tyno(—br) = (=7,0). If & <v < F,
sl
then ¢y po (27 (a nf)j}JQ) = (Tn_jfw L 2:; ) lies on the boundary line 1 — 6, = 7 of A+ If -3 <
v < =5, then 0 (27 (a;f)f: ) = (‘:;:Z”W, _g:ivﬂ) lies on the boundary line 6; — # = —7 of
Ay . Finally confirm that the length of I, ,, , is less than or equal to 1/2m.
The function 0 < r = pp, n(#) < 1 is given as a unique solution of ¢, p ,(r) = 0. O

Lemma 3.14. Let m > n > 0 be relatively prime integers and 0 < |v| < m/2. Let a,b be positive
integers such that 0 < a/m < b/n <1 and mb—na = 1. The endpoints of the arc By, ., are given
as follows. First, limg_orqy/m Pmnw(0) = 1. For 0 <|v| < 5, we have limg_orpy/n Pmnw(0) = 1.
For |v| = 5, we have limg_,+pr pn(0) = =7, where ¥ € (0,1) is a unique root of the equation

m(1— ™) (1 —7") —n(l+r™)(1+r") =0. (3.3.1)
For § < |v| <%, we have ].ime_)ﬂ_Q(a—b)v:tl Pmnw(0) = 0.

Proof. As 0 — 27 or 0 — 27r%”, we have sinmf — 0 or sinnf — 0, respectively, and so the
positive root 7 of ¥, 6(r) = 0 tends to a root of the equation (1 —7™)(1 —r")cos 7% = 0 or
(1 —=r"™)(1 —=7r")cos 7% = 0, either of which is equal to 1. As 6 — +bm, where n is even, the
positive root of 1, » ¢(r) = 0 tends to a root of the equation

(G =r™) (L =) = Z(1+7™)(1+7") sin =T cos 7 =0,

which has a unique root 0 < 7 < 1.
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Figure 3.5: The set B1UB_; of generators of quadrilateral Voronoi spiral tilings. The arc By, 1 is
denoted by (m,n), and By, n,—1 = Bym,1 by (n,m). The arcs By, 1 +1 accumulate to the interval
[0,1] on the real axis, as m — oo.

As 0 — W%, we have cos 56 — 0, and so the positive root of ¥, » ¢(r) = 0 tends to

—4v+(m+n)

a root of the equation (r™ + r™) cos Sm—n)

m = 0, which is equal to 0. 0

Figure 3.4 shows thet set By4 = U=41 42 +3p(B74,), which is a subset of a real algebraic
curve defined by an inequality ¥74(2) < 0, i.e., by an equation Rey/W74(2) = 0. Each arc
By 4, consists of the generators of Voronoi quadrilateral (multiple) spiral tilings with an opposed
parastichy pair {4,7}. The polynomial (3.3.1) for m = 7, n = 4, has a root 7 = 0.6776---. So
the arc p(B742) has an endpoint —7 = —0.6776---. It is a critical point of the function Wy 4.

Let R := {(m,n) € Z% : m > n > 0 are relatively prime}. Let §(0) = {reV= :0 < r < 1} be
a radial line segment in D.

Theorem 3.15. Let B, := U(m,n)eRp(Bm,n,v)' The union B := ], By is a dense subset of D.

v>0

Proof. For each v > 0, we shall show that a radial line segment 6(27bv/n) is contained in the
closure of B, := U(m,n)eRp(Bm,n,v)’ whenever n, b are relatively prime and 1 < b < n < 2v.

Let 0 < a < m be integers, such that m > 2v and mb —na = 1. Let m; = nj + m and
a; = bj +a for j > 0. Then, we have m;b — na; = 1, and a;/m; — b/n as j — +oo. Since
n/2 < v < m;/2, the arc p(Bpm; nw) connects the m; th root of unity 2™V =1a;9/m; with the origin.
As j — +oo0, the length of the interval I, ., = (27ma;v/mj, 27 ((a; — b)v + £)/(m; —n)) tends to
0. Thus, the curves p(Bm, n,v) accumulate to the radial line segment §(27bv/n) as j — +oo. [

Figure 3.5 shows the set B; U B_1 of generators of quadrilateral Voronoi spiral tilings. This
indicates that the arcs By, 1 +1 accumulate to the unit interval [0, 1] = §(0) as m — +o0.

3.3.2 Shape limit of quadrilateral Voronoi spiral tilings

Let v > 0, 8 € (—mv,mv]. In this section we suppose that 6/27v is a fixed irrational number.
In the continued fraction expansion of x = 6/2mv, we defined the sequences ¢; and ¢, j > 0,
0 < k < ajq1, in Section 2.3. For each j > 0 and 0 < k < ajyq1, let ajrp/min < bjr/njk
be a pair of convergents of x = 6/2mv such that {m;,n;r} = {g;,q;xr}. If the convergents
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aj /M ks bjk /M k are admissible, let 0 < r =r;; < 1 be the root of the equation ¥, , n.,.6(7) =
0, and (1 = rmkeie € M,. The Voronoi tiling 7 = 7 ((jx) for the spiral site set S generated by
Cjk is a quadrilateral Voronoi spiral multiple tiling.

Lemma 3.16. Let v > 0, 0 € (—mv, mv|, and suppose that % is an irrational number. Then,
Mk MGk, Tk

all the angles of the quadrilateral D(l,(jk ik Gk ) tend to /2 as j — oo.

Proof. Denote by m = mj, n = n;, ¢ = (j for the sake of simplicity. First note that we have
—m < arg(¢") < 0 < arg(¢™) < m, where —mv < arg(z) < mv denotes an argument of z € M,.
Since the quadrilateral (J(1,¢™, (™" (™) is inscribed in a circle, we obtain

4((71, 17 Cm) =T = 4(<m, <m+n, Cn)v
Z(1,¢™, M) = = £(¢MT ¢ ).

Moreover we have

m=Z(C"1,¢M) + Z£(1,¢7, M) +arg(¢™),
™= (" 1,¢M) + £ ¢ 1) — arg(CT).

Solving these equations, we obtain

arg(¢™"), £(1,¢M, (M) =

arg(¢" "), £(¢™ (1) =

Z£(¢"1,¢M) =

£(¢m ¢ M = T+

(ST T
NN =

all of which tend to 7/2 as j — oo, since

lim arg(¢™™™) = lim arg(¢™ ") =0.
J—

j—+oo +oo
O
Lemma 3.17. Suppose that the coefficients {a;}j>0 in the continued fraction expansion
I = [ag, a1, az,...]
are bounded. Then we have o
0<1l—rjr<——,
Mk
—(270)2 'm0, n; L0 C
0<1mryy— |~ maaly mirdy — (3.3.2)
MmNk 2T 2mv msy

where C' > 0 is a constant independent of j, k.
Proof. For the (principal or intermediate) convergents p; /g, of 0/2mv, we have

C

- 2
95k

0 ik
2mv 4k

where the constant C' > 0 is independent of j, k. This implies that




for sufficiently large j. This implies that

C/
qj,k

0
n qj.k

ta
n

where C’ is independent of j, k. Denote by m = mji, n = nji, ¢ = (i for the sake of
simplicity. Since a; are bounded, the ratios n;;/m; are also bounded. By abuse of notation
we shall sometimes denote the constants that are independent of j, k by the same letter C. The
plastochrone ratio 0 < r =, < 11is a root of the equation

0 0
(1 — ™)1 =) + (1 +r™)(1 + ") tan % tan % = 0. (3.3.3)
We have
L+7™)(1+ ") m nY
1—7)2 = ( tan — tan —
O = A ) () [P0 B
<22 (N2
- 1-1 (m) m?2’
and hence
C
1—r< —.
m
This implies that
m—1 m—1
C m C
5> 1— ) =22(1—(1==2 )™ >C’ 3.3.4
Dz - = G- (- ) 2 O (33.4)

with C’ > 0, since limy,—.oo(1 — £)™ = e~¢ < 1. By applying (3.3.4) to (3.3.3) again, we obtain

m nb
tan — tan —
2 2

(1+r™)(1+ ")
(T+r+-+rm A +r 4. F ol
2.2 C C
< Goan P =
Cm-Cm "m m

(1 —7‘)2 =

and hence

C
1_T§ﬁ

Here we adopt a notation ¢ = O(m~%) when there exists a constant C' independent of j, k such
that |¢| < C/m?®. Then we have

t:=1—7r=0(m?),
rm=(1—-t)"=1-mt+O(m?),
M =(1-t)"=1-nt+0(m2),
taane = mo(22) + O(m=3),

2mv
tan %9 = WU(%) +O0(m™3).
By (3.3.3) we obtain
mb ., nb
tont+ (2m0)* (— ) {z— 2=
mt - nt + (27v) <27w><27rv>+0(m ) =0,
thus t2 = —%(%)(%> + O(m~?), where we note that (#2) < 0 < (22)  and hence we
obtain (3.3.2). O
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Figure 3.6: A quadrilateral Voronoi spiral tiling generated by (0.9989---)el?, § = 27 - %, with
an opposed parastichy pair {41,71}. (a) Global view around the origin. (b) Local view around
the tile Tp. The shapes of the quadrilaterals are close to the rectangle with the aspect ratio /3.

Similar to the rectangular helical Voronoi tilings, we suppose that 6/27v is a quadratic irra-
tional number.

Let R(A,v) C C be the set of ratios (Cjnfck - 1)/((:1,5'“ — 1), where j > 0,0 < k < ajy; and

such that the convergents a;/m;k, bjk/njr of 0/27v are admissible. Let
Q(0,v) := Q(R(6,v))
be the limit set, i.e., the set of the accumulation points, of R(6,v).
Theorem 3.18. Suppose that 0/27v is a quadratic irrational number. Then we have
Q0,0) = {i (—hss1(k) V72 0< s < d,0 < k < byyy}. (3.3.5)

In particular, it is a finite set.

Proof. Since /27v is a quadratic irrational number, there exists a constant C7,Cy > 0, indepen-
dent of j >0, 0 < k < aj4+1, such that

G _(pix 6 _ O
See Theorem 188 in [22]. This implies that
Cl m "ke CQ
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We have

Tk . .
Gr —1  —1+7r"cosnb +ir"sinnd
g;",g’“ —1  —1-+7rmcosmb +irmsind

—nt + i2mv(22) + O(m~2)

—mt + i2rv(2) + O(m~2)
—\ THEE) (G +1(555) + O(m™?)

B B ) + O

since <%> <0< (%), where we denote by m = m;, n = n;;. Thus it is written as

n; , (=1)7/2
C‘Jvk 1 o 9,k0
7,k i qj,k ( < 20 >) (1 + O(qj_l))

™k = . 0
Gu —1 % (g

By using the continued fractions, we have

G/ =k, aj,a;-1,...,a1],

q;k0, ,, q;0
G o) = g1 — hoaen 0z, ]

for j > 1,0 <k <aji1. As j — 400, they tend to the periodic sequence of continued fractions

[k,bs, . .,bl,bd, .. .,bs+1] and [bs+1 - k’,b5+2,. . .,bd,bl, . .,bs+1].

However, we have

[kabsa o 7b1)bd7 .. 'abs-i-l] . [b5+]_ - kabs+2a .. '7bd7bl) .. 'abs-i-l]
= (b — wep1)(=k + wst1)
= —tst1(k)

for 0 < s < d, 0 <k <bgyp. This completes the proof. O

Figure 3.6 shows a quadrilateral Voronoi tiling generated by ¢ = (0.9989---)el’, § = 27 -
(14 +/3)/2, with an opposed parastichy pair {41,71}. Note that (1 +1/3)/2 = [1, 2] is a purely
periodic continued fraction expansion. The defining polynomial of w; = [2,1] = 14 /3 is
Y1(r) = 2% — 22 — 2, and the defining polynomial of wy = [1,2] = (1 + v/3)/2 is 1 (z) =
22 —x —1/2. We have (—1(1))"2 = /3, (=1(2))? = V2 and (—(1))"Y2 = /2, and
so Q0 = (1 ++3)/2,v = 1) = {iv/2,iv/3}. This implies that the limit set of the shapes of
quadrilateral tiles, as r — 1, is the rectangles whose aspect ratios are v/3 and v/2. The opposed
parastichy pair {41,71} in Figure 3.6 corresponds to the pair of convergents ps/qs = 56/41 <
0/2m < pe1/ge1 = 97/71, and r = 0.998921 is a root of the polynomial ¢, , ¢(r) for {m,n} =
{41,71}. The ratio (¢} — 1)/(¢gh — 1) = 0.102397 + 1.70098i is close to iv/3.

l\’)[\)l

Corollary 3.19. If the coefficients aj = 1 of the continued fraction expansion of 0/2mv for
sufficiently large j, then Q(0,v) = {i}.
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Figure 3.7: A quadrilateral Voronoi spiral tiling generated by (0.9994 - --)exp(27i-7), 7 = Ltv/5
with an opposed parastichy pair {34,55}. (a) Global view around the origin. (b) Local view
around the tile Ty. The quadrilateral tiles are close to the squares.

Proof. The golden section 7 = [1,1,...] = [1,1,1] is a root of a quadratic polynomial ¢(z) =
22 —x — 1, and we have —1(1) = 1. O

Figure 3.7 shows a quadrilateral Voronoi tiling generated by ¢ = (0.9994 - - - )e?™7 7 = L5
with an opposed parastichy pair {34,55}. The tiles are close to the squares.

Figure 3.8 shows the parastichy transition of Voronoi spiral tilings with the fixed divergence
angle # = 2m(v/2 + 1), from a hexagonal tiling with opposed parastichy pairs {5,2}, {5,7},
through a quadrilateral tiling with an opposed parastichy pair {5, 7}, to a hexagonal tiling with
opposed parastichy pairs {5,7}, {5,12}. The limit set is given by Q(6 = 27(v/2 + 1), = 1) =
{i,iv2,1/v/2}.

Figure 3.9 shows the parastichy transition of Voronoi spiral multiple tilings of multiplicity
v = 2, with the fixed divergence angle § = 27(7 — 1), from a hexagonal tiling with opposed
parastichy pairs {10, 13}, {13,3}, through a quadrilateral tiling with an opposed parastichy pair
{13, 3}, to a hexagonal tiling with opposed parastichy pairs {13,3}, {13,16}. The limit set is
given by Q(0 = 27 (1 — 1),v = 2) = {i,iv/2,i/v/2,iV3,i/V3}.
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(c) (d)

Figure 3.8: Voronoi spiral tilings generated by ¢ = rel’ with the fixed divergence angle § =
2m(v/2 + 1), v/2 4 1 is the silver mean. (a) r» = 0.9, hexagonal tiling with opposed parastichy
pairs {5,2}, {5,7}. (b) r = 0.90974, quadrilateral tiling with an opposed parastichy pair {5, 7}.
(c) 7 = 0.94, hexagonal tiling with opposed parastichy pairs {5,7}, {5,12}. (d) r = 0.96286,
quadrilateral tiling with an opposed parastichy pair {5,12}.
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(d)

()
Figure 3.9: Voronoi spiral multiple tilings of multiplicity v = 2, which is generated by ¢ = rel? €
My with the fixed divergence angle 6§ = 27(7 — 1), 7 = # (a) r = 0.9, hexagonal tiling with

opposed parastichy pairs {10, 13}, {13,3}. (b) r = 0.92559, quadrilateral tiling with an opposed
parastichy pair {13,3}. (c) » = 0.96, hexagonal tiling with opposed parastichy pairs {13,3},
{13,16}. (d) » = 0.97238, quadrilateral tiling with an opposed parastichy pair {13,16}.
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Triangular spiral tilings
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Chapter 4
Triangular spiral tilings

4.1 Quadrilateral spiral multiple tilings

In this section, we define a spiral multiple tiling as a tiling of a covering space of the punctured
plane C* := C\{0}.

Let C, := C/27viZ be a cylinder, where v # 0 is an integer. By the exponential function
exp : C, — C* which maps w + 27viZ to z = ¥, (), is a covering space of C*, with degree v.
The metric on C, is written by the Euclidean metric on C*, ds? = dzdz = e*Re(*) dwdw.

Definition 4.1. Let T’ be a tiling of C,. Then exp(T') = {exp(T")}rre7 is called a multiple
tiling of C* of multiplicity |v|. Let A be an additive subgroup of C,. We say that T' admits a
transitive action by A if

(i) for each T € T' and n € A, we have T' +n € T', and
(ii) for any pair Ty, Ty € T', there exists n € A such that Ty = T| + 1.

If T' admits a transitive action by an additive group 7 which is generated by a single element
€ Cy, then T = exp(T"') is called a spiral multiple tiling of multiplicity |v].

Let ¢ = el € D\R with 0 < r < 1, and consider the spiral sequence S = {¢7}jez of C*, which
is generated by a single element (. In the phyllotaxis theory, 1/r is called the plastochrone ratio
and 6 = Arg(() is called the divergence angle, where —m < Arg(z) < m denotes the principal argu-
ment of z € C*. Let m,n > 0 be relatively prime integers. Suppose that Ty := (1, ™, (™" (™)
is a quadrilateral of C* in this order of vertices. Let

&m = mlog(r) +1 (m@ — QW[[gf]]) € log(¢™),

&n i=nlog(r) +1i <n9 — 2%[[23?]]) € log(¢"),

where [z] denotes an integer which is the nearest to 2 € R such that —3 < (z) := z — [z < 1.
Let a, b be integers such that mb —na = 1. Let

€ 1= bém — a&y = log(r) +1(0 + 2¢) € log(¢), = “Ugﬂ B b”%f“’

and

Ve m[[;i;‘:]] _ n[[%]] - "Arg“m)z;m“g“n). (4.1.1)

Theorem 4.2. Let ¢ = re'? € D\R. Let m,n > 0 be relatively prime integers, and suppose that
(M Mg R If Ty :=0O(1, ™, (™™ (™) is a quadrilateral in C* in this order of vertices, then

T = {Tj := O(¢F, (9™, (THmn () ey (4.1.2)

is a spiral multiple tiling of multiplicity |v|, where v is given by (4.1.1).
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(a) (b)

Figure 4.1: Quadrilateral spiral tilings with the divergence angle § = 277, where 7 = 1+—2‘/5 is
the golden section. Each j € Z indicates the position of the complex coordinate ¢/ € S. (a)
r = 0.97 and an opposed parastichy pair is {13,8}. (b) r = 0.99 and an opposed parastichy pair
is {13,21}.

(a) (b)
5+v5

Figure 4.2: Quadrilateral spiral tilings with the divergence angle 6 = 27 - >, (a) r = 0.96 and

an opposed parastichy pair is {7,11}. (b) r = 0.98 and an opposed parastichy pair is {18,11}.

Proof. Since the complex logarithmic function log is a multiple-valued function, log(7p) has |v|
components in C,. Let Tj) be a component of log(7p) which has 0,&,,&n + &, and &, on its
boundary. In C,, we have n&,, — m&, =0, m& = &, né = &, and £, Z + £,7Z = £Z mod 27viZ.
Let 77 := {T{) + k1&m + k2&n iy kocz = {T}) + k& kez. Then T’ is a tiling of C, which admits a
transitive action by {Z. Hence we have 7 = exp(7”). O

We call (4.1.2) the quadrilateral spiral multiple tiling of multiplicity |v|. In the quadrilateral
spiral multiple tiling 7', we say that two quadrilateral tiles Th,T> C 7 are adjacentif §(T1NTs) > 1,
that is, 771 N1y is a line segment with positive length, where #(7") denotes the potency of T'C 7.
That is, we do not say that 77 and 75 are not adjacent if T3 NT5 is a point or the empty set.
For all j € Z, tiles T; of a quadrilateral spiral multiple tiling 7 is adjacent to four tiles T},
and Tji,. In the phyllotaxis theory, the pair (m,n) of (4.1.2) is called the parastichy pair if Tj
is adjacent to T}, and T,,. Moreover, the parastichy pair {m,n} is called an opposed parastichy
pair if Arg(¢"™)Arg(¢™) < 0 and a non-opposed parastichy pair if Arg(¢™)Arg(¢™) > 0.

Figure 4.1 5bows two examples of quadrilateral spiral tilings with the divergence angle 6 = 277,

14+v5

where 7 = ~2%2 is the golden section. The opposed parastichy pairs {13,8} and {13, 21} are pairs

of successive terms of the Fibonacci sequence. Figure 4.2 shows two examples of quadrilateral
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Figure 4.3: A quadrilateral spiral tiling with a non-opposed parastichy pair {13, 8} generated by
¢ = 0'97627r(1.627)i'

spiral tilings with the divergence angle 6 = 27 - %. The opposed parastichy pairs {7,11} and

{18,11} are pairs of successive terms of the Lucas sequence.

4.2 Continued fractions and quadrilateral spiral multiple tilings with opposed
parastichy pairs

In the phyllotaxis theory, it is shown that the relationship between the opposed parastichy pair
{m,n} and the continued fraction approximation of #/2x. It has a natural extension to spiral
multiple tilings as shown below.

Theorem 4.3. Let ( = rel? ¢ D\R. Let m,n > 0 be relatively prime integers. Suppose that
¢ (" g R_. If (4.1.2) is a spiral multiple tiling and (m,n) is an opposed parastichy pair, then
a/m, b/n are principal or intermediate convergents of x = (6/2m + £)/v, at least one of which is
principal.

Proof. We may suppose that Arg(¢™) < 0 < Arg(¢™) without loss of generality. In the setting of
the theorem 4.2, we have ¢ = a[nf/2x]] — b[m0/27] and v = m[[nd/2x7] — n[m6/2x]. Thus

0 nd nd mb mo 0
n(%+€>—bv—27r—[[27r]]<0<%—ﬂ%ﬂ—m<2ﬂ+£>—av,

and hence

1
a<<9+£)<b, mb —na = 1. (4.2.1)
m v \27 n

Thus a/m, b/n are principal or intermediate convergents of x = (/27 + ¢)/v, at least one of
which is principal. ]

Figure 4.3 shows an example of a quadrilateral spiral tiling with an non-opposed parastichy
pair {13, 8}, where the divergence angle is 27(1.627). This pair {13,8} is not a pair of denomi-
nators of two successive terms of convergents of 1.627 which satisfy the condition (4.2.1).

4.3 Triangular spiral multiple tilings

Let m,n > 0 be relatively prime integers. Let ¢ = rel? € D\R with 0 < r < 1, and suppose
that ¢, (™ ¢ R_. If three of the four points 1, "™, (™" and (™ lie on a same line, then (4.1.2)
becomes a triangular spiral multiple tiling. In this section, we consider triangular spiral multiple
tilings given as a special case of quadrilateral spiral multiple tilings.
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(a) (b)

Figure 4.4: Phyllotactic triangular spiral tilings with the divergence angle § = 2zn7. (a) r =
0.9328 - - - and the opposed parastichy pair is {5,3}. (b) r = 0.9849 - - - and the opposed parastichy
pair is {5, 8}.

Let
k1
z2m—1

¢m,k(z) -

be a rational function of one complex variable.

(4.3.1)

Lemma 4.4. Let m > n > 0 be relatively prime integers. Let ¢ = rel? € C\R, and suppose that
(™ #£ 1. Then the following conditions are mutually equivalent.

(i) The three points (™, (™™ and (™ lie on a same line.
(ii) The four points 0, 1, "™ and (" lie on a same circle.
(111) fmn(r,0) =0, where

fran(r,0) = 1" sinnf — r" sinmf + sin(m — n)#. (4.3.2)

(iv) qu,mfn(C) eR.

Proof. (i) < (iv): We have ("™ — (™ = t(¢"™*™ — (™) holds for some ¢t € R,
(ii) < (iv): The cross ratio of 1, ¢, ¢"™*™ and (™ is given as @m m—n(C).

(iii) ¢ (iv): We have Tn(¢m,mn(C)) = —1Sa=gjs frnn(r,6). m

Figure 4.4 shows two examples of triangular spiral tilings with the divergence angle 6 = 27,
which are called Fibonacci Tornado. In Figure 4.4 (a), an opposed parastichy pair is {5,3}. In
Figure 4.4 (b), an opposed parastichy pair is {5,8}. See [36, Fig.1] for a biological triangular
spiral tiling by Suaeda vera. Figure 4.5 shows an origami development for the triangular spiral
tiling of Figure 4.4 (a).

4.3.1 Triangles which admit spiral multiple tilings with opposed parastichy pairs

In this section, we consider shapes of triangles which admit spiral multiple tilings with opposed
parastichy pairs.

Let m,n > 0 be relatively prime integers. Let I = (—m, 7| be a half-open interval, and consider
an injective map

tmn L — I? tmn(0) = (ZW(me),QW(ne)) ,
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() (d)

Figure 4.5: An origami for the phyllotactic triangular spiral tiling of Figure 4.4 (a). (a) An
origami sheet. Solid lines are mountain fold and dashed lines are valley fold. (b) Side view from
right, before squash. (c¢) Side view from right, after squashed. (d) Top-down view.

where (z) € (—3, 3] denotes a fractional part of z € R such that [z] := x — () € Z. The image

of L p is a stripe in the square I 2 written by

tmn(I) = U {(01,609) € I? : nby — mby = 270}
[v|<(m+n)/2

Let A=A, UA_,

A+:{(91,02)612: 0<91<92+7T<7T},
A_={(01,05)€I?: 0<by< b +7<T}

Then ¢y, (1) N A is a union of line segments written by

tmn(I)NA = U lnnvs  mmw ={(01,62) € A:nb; —mby = 2mv}.

max(m,n)

0<|v|< )

Theorem 4.5. Let m > n > 0 be relatively prime integers. Let v > 0 be an integer. The
followings are mutually equivalent.

(i) There exists ¢ € D\R such that
T = {T; =0(¢, Ztm, ¢IHmtn ¢ty = A, G, ) e (4.3.3)

is a triangular spiral multiple tiling of multiplicity v with an opposed parastichy pair {m,n},
[Z(FF™, ¢ )| = aand [£(¢, O =6 (5 € ),
(i) na+mpB = 2mv.
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Figure 4.6: The set ¢53(/) N (A4 UA_) consisted of four solid lines, denotes the set of the pair of
angles 15 3(6) = (271'(%% 277(%» of triangles that admit spiral multiple tilings with an opposed
parastichy pair {5,3}. The dotted lines are the lines 30; — 505 = 27v, —4 < v < 4. For each
endpoint ¢53(0) of a solid line, #/27 is a rational number as shown in this figure. The mark %
denotes the point ¢5 3(277) which produce the triangular spiral tiling of Figure 4.4 (a).

(111) (o, —f) € b v,

Proof. (i) = (ii): By taking complex conjugates if necessary, we may suppose that Arg(¢") < 0 <
Arg(¢™). Since the quadrilateral [J(1,¢™, (™ (™) is a quadrilateral in this order of vertices,
the three points (", (™% and (" lie on a same line. By Lemma 4.4, the four points 0, 1, (™ and
¢™ lie on a same circle. Thus we have Arg(¢™) = «, Arg(¢"™) = —f, and hence na + mf = 27v.
(ii) < (iii): Obvious.

(iii) = (i): We assume that (o, —f3) € lmmo. Let 0 = 1} (0, =) € Impp. Then we have
sinm@ > 0, sin (—nf) > 0 and sin(m — n)# > 0, and so we have

Jmne(0) =sin(m —n)f > 0,
fmm,o(1) = (cosnf — 1) sinmb + (1 — cosmb) sinnb < 0,

dfmno(r)/dr = (mr™sinng — nr" sinmf) < 0,

where note that f,, ,(r,0) is rewritten by f,, »o(r) because 6 is given. The Intermediate Value
Theorem implies that the equation fp, ,¢(r) = 0 has a unique root 0 < r < 1. Let ( = rel?.
Then, since fy, (1) = 0, the three points (™, ¢("™*™ and (" lie on a same line by Lemma 4.4.
Since Arg(¢™) < 0 < Arg(¢™), we have Arg(¢") < Arg(¢™*™) < Arg(¢™). So ¢™*™ lies on the
line segment £(¢"™, (™). Thus (4.3.3) is a spiral multiple tiling of multiplicity v with an opposed
parastichy pair {m,n}. By Lemma 4.4 again, the four points 0, 1, ("™ and (" lie on a same circle,

and so we have Z(¢™, (", 1) = £(¢"™,0,1) = o and £(1,{™, (") = £(1,0,¢") = . O

The set t53(1) N AL in Figure 4.6 consisted of two solid lines, denotes the set of the pairs of
angles (o, —(3) in Theorem 4.5. The dotted lines are the lines 30; — 562 = 27v, —4 < v < 4. For
each endpoint ¢53(6) of a solid line, /2 is a rational number as shown in this figure. The mark
% denotes the point ¢53(277) which produce the triangular spiral tiling of Figure 4.4 (a).

Let R = {(m,n) € Z* : m > n > 0 are relatively prime}. Theorem 4.5 implies that for each
v >0, L, := U(m,n)e rlmmny C Ay is the set of shapes of triangles which admit spiral multiple
tilings of multiplicity v with an opposed parastichy pair {m,n}.

Definition 4.6. A set X is called a nowhere dense subset of a topological space if the interior of
the closure of X is the empty set.
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Figure 4.7: A spiral tiling by equilateral triangles. Opposed parastichy pair {m,n} = {5,1}.
0 =—m/3, r=0.7548 - - - . See Figures 4.8 for its origami development. The equilateral triangle
does not admit a spiral tiling with a non-opposed parastichy pair.

Theorem 4.7. For each v > 0, L, is a nowhere dense subset of A,. The union L := UU>0 L,
is dense in Ay.

Proof. Fix v > 0, and let K C Ay be a compact set. Since €, C [0,v/n] x [—v/m,0], K
intersects ¢y, ., for only finitely many (m,n) € R. Hence L, is nowhere dense. The union
L =Uy>0Lv = Upmnner tmn(I) N Ay is a union of stripes tppn(I). Thus it is a dense subset of
Al O

4.3.2 Examples of triangles which admit spiral multiple tilings with opposed paras-
tichy pairs

By Theorem 4.5, we obtain the following examples of triangular spiral multiple tilings with
opposed parastichy pairs.

(i) A spiral tiling by equilateral triangles: The equilateral triangle generates a spiral tiling
with an opposed parastichy pair {5,1}, of Figure 4.7, since 7 +5- 35 = 2w See figure
4.8 for its origami development. The generator ¢ = re'? is determined by the equation
t5,1(0) = (3, —%) and r° + 7 —1 =0, thus = —% and r = 0.7548 - - - .

(ii) A spiral multiple tiling by right triangles with angles 30°, 60° and 90°: The right triangle
with angles 30° and 60° has a spiral multiple tiling of multiplicity v = 2 with an opposed
parastichy pair {11,2}, since 11 - § +2- & = 4m. See Figure 4.9. The generator ¢ = relf
is given by the equation t11,2(0) = (%, —%) and v3r'! +r? —2 = 0, thus § = —7/6 and
r = 0.9581---. Figure 4.10(a) is its origami sheet, but the top-down view in Figure 4.10
(b) is apparently different from the multiple tiling in Figure 4.9. A problem is that the
paper sheet is not penetrable. It is not possible to actualize a double-covering space of the

punctured plane C*.

4.3.3 Generators of triangular spiral multiple tilings with opposed parastichy pairs

Let m > n > 0 be relatively prime integers. In this section, we consider a set of generators of
triangular spiral multiple tilings for each opposed parastichy pair {m,n}.
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(c)

Figure 4.8: Two paper-folding sheets which build the same origami of Figure 4.7. (a) An origami
sheet for beginners, very easy. (b) A sheet for experts, quite difficult. (c¢) Top-down view.

Lemma 4.8. Let m > n > 0 be relatively prime integers. Let ( € C\ R, and suppose that
¢m (" € R. The followings are mutually equivalent.

(i) I¢| < 1, and T in (4.5.3) is a triangular spiral multiple tiling with an opposed parastichy
pair {m,n}.

(i1) ¢ € Py n where Py, :={C € C\R : ¢py m—n(¢) > 1}.
(i41) Gmn(1/¢) <O0.

Proof. (i) = (ii): We assume that ("' lies on the line segment ¢(¢",("). Then we have
(¢™ — (™) = ¢(¢™F™ — (™) for some t > 1. Thus ¢pm—n(¢) > 1 holds.

(ii) = (i): We assume that ¢pm-n(() > 1. Then ("™ — ¢™) = ¢(¢™™™ — (™) holds for some
t > 1. This implies that ¢"™*™ lies on the line segment £(¢"™, (™). Thus the quadrilateral
0O(1,¢™, (™™ (™) is a triangle with corners 1, (™ and (™. Since (""" lies on the line seg-
ment £(¢"™, ("), we have [(""] < max(|¢"™[,|¢™]) on the line segment £(¢™, (™). Hence [¢] < 1.
Since ¢"*™ lies in an angular region Z(¢",1,{™), we obtain Arg(¢™)Arg(¢") < 0.

(ii) < (iii): This follows from the relation ¢, »(1/¢) + Gmm-n(¢) = 1. O

Lemma 4.9. Let m > n > 0 be relatively prime integers. Then we have Py, ,, = UO<|v|<m/2 P,
where

Pm,n,v = {C € Pm,n : nArg(Cm) - mArg(C”) = 27‘(’1}}.

For each v € Z with 0 < |v| < m/2, there exists a real analytic function r : Ip, p, — R such that
the mapping

Pmnv - Im,n,v - Pm,n,va (Pm,n,v(g) = T(H)eiey

is a homeomorphism.
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Figure 4.9: Spiral multiple tiling by right triangles with angles 30° and 60°, with multiplicity
v = 2, opposed parastichy pair {m,n} = {11,2}, § = —x/6, r = 0.9581 - - -.

()| (b)

Figure 4.10: An origami development for the spiral multiple tiling of Figure 4.9. (a) An origami
sheet. (b) Top-down view.
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Figure 4.11: A real algebraic curve Im(¢52(¢)) = 0. A rational number x on the unit circle denotes
e?™  The marks A, B and ¢ indicate the points ¢, where ¢5.2(¢) =0, 1 and oo respectively.

Proof. We have already shown that () is uniquely determined as a root of the equation f, ,, ¢(1) =
0, in the proof of Theorem 4.5, where note that fy, »(r,8) is rewritten by fy, 0(r) = 0 because
0 is given. O

Figure 4.11 shows the real algebraic curve Im(¢52(¢)) = 0. Inside D\R, it consists of four
arcs Ps3,, v=*£1,£2.

Lemma 4.10. Let m > n > 0 be relatively prime integers and 0 < |v| < m/2. Let a,b be integers
such that 0 < b < a < m and mb —na = 1. The interval Ly, . has an endpoint 2w(%). The

a
m
5, —mifv=—%;

other endpoint of I n. is given as follows: 27r<%”> if 0 < |v| < §;mifv=5;

_ 1 _blo—1L
o (e ypn o m gnd 2p (02 ypm g < 1

The arc Py, no has an endpoint lim0_>27r<ﬂ> Omono(0) = e2imav/m - The other endpoint is given

m—n

as follows: For 0 < |v| <n/2,1imy_,_be) Pmme(0) = Amv/n - For v| = n/2, limg_y @mnw(0) =

—7, where 7 is a unique positive root of the equation
m—mn=mi" +ni". (4.3.4)

o (a::)ff%) Som,nm(e) =0.

Forn/2 < |v] <m/2, lime

Proof. First, we see that tpm,(2m(%)) = (0,—22%). Second, we see the other endpoint as fol-

AL
lows. If 0 < |v] < 2, we have t;,,(27(%2)) = (2£2,0). If 2 < v < 2, Lm7n(2ﬂ<%>) =

m—n

(Z=2vy 1=2V7) lies on the boundary line 61 —0y = mof Ay If =% < v < =2, Lm,n(27r<%>) =
(%mi_f”ﬂ, %”7:3;’77) lies on the boundary line 8 — 6, = 7w of A_. For each candidate 0 of the end-
point of I, p », we confirm that ¢, ,,(0) lies on the line nf; — méy = 27v.

Finally, we prove the latter half of Lemma 4.10. Note that fi,, (7, 0) is rewritten by fy, no(r) =
0 because  is given. As 6 — 27 (%%) or 6 — 27T<%U>, we have sinmf — 0 or sin nf — 0 respectively,

b+l
so the positive root r of the equation fy, ,9(r) = 0 tends to 1. As 6§ — 2%(%% we have

sin(m —n)# — 0, sor — 0. As § — m, we have all sin m#, sin n, sin(m — n)f — 0, so the limit 7
of r is a root of (4.3.4). O

Figure 4.12 shows the stripe t74(I) N (A4 UA_) and the real algebraic curve Im(¢73(¢)) = 0.
At the endpoints of each arc P74, v = £1,£2, £3, we have ¢73({) = 1, 00. This example shows
the three types of intervals in Lemma 4.10. The interval I7 47 = 27(—2/7, —1/4) corresponds to
the line segment (7 41 with endpoints on the 6;-axis, j = 1,2, and the arc P74 with endpoints
on the unit circle. For I749 = 2m(3/7,1/2), the line segment {742 has an endpoint (7,0) on
the corner of I%, and the arc Pr 42 has an endpoint —0.7644 on the real axis which is a critical

64



> 01
\\\\ ‘///
17
(a) (b)
Figure 4.12: (a) The stripe ¢t74(1) N (A4 UA_) consists of six solid lines. (b) The six arcs P74,
v = =£1,42,43, connect M and 4 on the real algebraic curve Im(¢73(¢)) = 0.

point of the function ¢73(¢), where 7 = 0.7644 is a root of the equation 3 = 77* + 477, For
I7 43 =2m(1/7,1/6), the line segment ¢7 4 3 has an endpoint on the line §; — 63 = 7, and the arc
Pr 43 has an endpoint at the origin. 1,3,4,7,11,18,... is the Lucas sequence.

In Theorem 4.3, a/m and b/n in (4 2.1) are successive convergents of x = 1 (£ +¢). The next
(principal or intermediate) convergent is given as the Farey sum (a+b)/(m+mn). "Thus we obtain

b

a+b
m-—+n

>} - Im+n,n,v U Im+n,m,v-

The following Lemma shows that the plastochrone ratio 1/|(| decreases in the parastichy transition
{m,n} — {m+n,n} or {m+n,m}. In particular, the arcs Py, 4n n» and Py, {n m,» do not intersect
Ppynw in D.

Lemma 4.11. Let 0 € Ly, 0, rel? e Pynw and roel? € Prinno YU Prgnme. Then r < rs.

Proof. Without loss of generality, we may suppose that v > 0 and rqe? € Prinny. By the

equation fp, ,¢(r) = 0, we have
(ri* — cosmf) sinnf = (ri’ — cosnf) sinmé. (4.3.5)

Let frinmno(r) =" " sinnd — r"sin(m +n)f + sinmf. It is a decreasing function of r, because
sinnf, —sin(m +n)f < 0. We have fp,1nno(r2) =0 by frne(r) =0 and

f(r1) =r(r — cosmb)sinnd + (1 — r} cosnb) sin mb

= (r{® — 2rf cosnd + 1) sinmé > 0
by (4.3.5). Hence 1 < ra. O

Let P, := U(m,n)eR P no for v # 0. Lemma 4.11 implies that for each v # 0, P, is not a
dense subset of ). However, we have the following result.

Theorem 4.12. The union P := Uv;ﬁO P, is a dense subset of D.

Proof. Denote by §(0) := {rel’ : 0 < r < 1} a radial line segment of D* =D\ {0}. We show that
a radial line segment o (277(%”)) is contained in the closure of P, whenever 1 <b < n < 2v.

We may assume that n,b are relatively prime. Let 0 < ag < mg < n be integers such that
mob — nag = 1. Let m; = nj +mp and a; = bj + ag for j > 0. Then we have mjb—na] =1,
and aj/m; — b/n as j — +4oo. For a sufficiently large j, we have § < v < 2], so the curve
Py nw connects the mj-th root of unity e2ma;v/m; with the origin, by Lemma 4.10. As j — 400,
the length of the interval I,;,; »,» tends to 0. Thus the curves Py, ». accumulate to 5(27T<ﬁ>) as

Jj — +o0. O
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Figure 4.13: The set P; U P_; of generators for triangular spiral tilings with opposed parastichy
pairs. The arcs Py, 1 and Py, , —1 are denoted by {m,n}. Compare this figure with a diagram
on the topology of knot complements [23, Fig.4]. The arcs P, 1 +1 accumulate to the interval

[0,1] on the real axis as m — co. The arcs Pojy1,2,41 tending to the boundary point —1 (marked

1) as k — oc.

Figure 4.13 indicates that the arcs P, 1 +1 accumulate to the unit interval [0,1] = §(0) as
m — oo.

4.3.4 Generators of triangular spiral multiple tilings with non-opposed parastichy
pairs

Let m,n > 0 be relatively prime integers. In this section, we consider a set of generators of
triangular spiral multiple tilings for each non-opposed parastichy pair {m,n}.

Theorem 4.13. Let m,n > 0 be relatively prime integers. Let v > 0 be an integer. Then the
followings are mutually equivalent.

(i) There exists ¢ € D\R such that
T — {Tj — D(Cj, Cj—f—m’ Cj-i-m—f—n’ Cj-&-n) _ A(Cj7 Cj—f—m’ Cj-i-m—l—n)}jez (4.3.6)

18 a triangular spiral multiple tiling of multiplicity v with a non-opposed parastichy pair
{m,n}, where

|Z(¢T, R )] = acand [£(CT LT = 6
forall j € Z.
(ii) na —mf = 2wv and there exists 0 < r < 1 such that

sin 8 = 7" sin(a + 3) — r™ " sin . (4.3.7)
Proof. (i) = (ii): By the assumption (i), the quadrilateral [J(1,¢™, (™" (™) is the triangle
A(1,¢™, ™). So ¢™ lies on the line segment £(1,¢™*™). Then we have (" — 1 = ¢(¢"™*" — 1)
for any 0 < ¢t < 1, and hence 0 < ¢y 4nn(¢) < 1. By Lemma 4.4, the four points 0, 1, ("™ and

66



(™™ lie on a same circle. Thus we have [Z(¢™, (™™ 1)| = Arg(¢™) = o and |[Z£(¢™F™,1,¢™)| =
Arg(¢™) = f for any j € Z, and hence na — mf = 2wv. Since 0 < ¢pyynn(¢) < 1, we have

r(—r™ " sinmf — sinnb + 7™ sin(m + n)f)

Im(¢m+n77’b(4)> = |Cm+n — 1|2 = 07

and hence we obtain the equation (4.3.7).

(ii) = (i): Since (a, B) € tmn(I), there exists a unique § € I such that ¢y, ,(0) = (o, 3). Let
¢ = rel?. By Lemma 4.4, the four points 0, 1, ¢™ and ¢"™*" lie on a same circle, so we have
Ominn(C) € R. |Z(CHM, GHHIN ()] = Arg(C™) = @ and (TR, ¢3¢ = Arg(C") = B.
The three points A,,4+n, Aopmtn and Ay, are collinear, so the three points Ay, A+, and Ag are
also collinear. Since Arg(¢™), Arg(¢™) > 0, we have Arg(¢"™ ™) > Arg(¢™) > 0, so (" lies on the
line segment £(1,{™*"). Thus (4.3.6) is a triangular spiral multiple tiling with a non-opposed
parastichy pair {m,n}. O

Lemma 4.14. Let m,n > 0 be relatively prime integers. Let ( € D\ R. Then the followings are
mutually equivalent.

(i) T = {T; = O(¢I,Jtm ¢itmtn citny = A(ijgj+m,§j+m+")}jez is a triangular spiral
multiple tiling with a non-opposed parastichy pair {m,n}.

(11) ¢ € Qmm, where Qmp :={CED\R:0 < ¢dpmyinn(() <1}.

(111) 0 < Ppmin,m(1/¢) < 1.

Proof. (i) = (ii): By the assumption (i), the quadrilateral [J(1,¢™, (™" (™) is the triangle
A(1,¢™, ¢™T™). So ¢" lies on the line segment £(1,(™™), that is, we have (" = t{™t" +1 — ¢
for some 0 < ¢t < 1, so we obtain 0 < ¢pinn(C) < 1.

(i) = (1): I 0 < ¢dminn(¢) <1, then (¢" — 1) = ¢(¢™™ — 1) for some 0 < ¢ < 1. This implies
that ¢™ lies on the line segment ¢(1,{™*"). Thus the quadrilateral 0J(1,¢™, ™", (") is the
triangle A(1,¢™,¢™*™). Since the angular region /(¢™,0,1) is contained in the angular region
Z(¢™*" 0,1), we obtain Arg(¢™)Arg(¢™) > 0.

(ii) < (iil): This follows from ¢py1n.n(C) + Gminm(1/¢) = 1. O

We have Q. = U0<|v|<n/2 Qm,n,v, where
Qmmp = {C € Qmn : nArg(¢™) —mArg(¢") = 2mv}.

We will give a parameterization of each arc Qu, no by r. Let A" = A/ UA”,

A ={(61,02) €T?: 61,05 > 0,01 + 0 < 7},
AL ={(61,62) € I*: 61,65 <0, 61 + 62 > —7}.

Let
A ={(01,02) € A" : nO; — mby = 2mwv}

m,mn,v

for 0 < |v| < n/2. Let a,b > 0 be integers such that mb —na = 1, 0 < 2 < & < 1. Then

m n

1
the interval I}, . . = v} (€, ) is written as I, = (2%(%%277(%)) for 0 < v < §;
1
I;n,n,'u = (2ﬂ<%>72ﬂ'<%>) for —% < v <0.

Theorem 4.15. For each v € Z with 0 < |[v| < §, there exists a real analytic function O, n :
0,1) — 1! such that the function ((r) = rexp(im (7)) is a homeomorphism of the unit

m,n,v
interval (0,1) onto Q. Moreover, we have

bu

). (4.3.8)

lm O,y 0 (1) = lim Oy p o (1) = 27
r—0 r—1
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Proof. Suppose that v > 0 without loss of generality. For each v € Z with 0 < v < n/2, we have
1
the interval I = (27r<%”>,27r((a+b)v+2 ). Fix 0 < r < 1. For 6 = 2m(%), we have

m,n,v m-+n

Arg(Gmsnn(C)) = Arg(r" — 1) — Arg(¢"™™" — 1)
— 7 — Arg((™ — 1)
=7 —7— Arg(l — (")
= —Arg(1—-¢™"") > 0;

(a—&-b)v—i—%
m+n

For 6 = 27( ), we have

Arg(¢m+n,n(<)) = Al"g(gn — 1) _ Arg(_,r.m—i-n _ 1)
= Arg(¢" — 1) —m — Arg(r™" 4+ 1)

= Arg(l1-¢") <.
The Intermediate Value Theorem implies that for each 0 < r < 1, there exists ¢ = re?, 6 € Lnw
such that Arg(dminn(¢)) = 0, and hence ¢rinn(() € R. Since Arg(¢™") > Arg(¢"™) > 0, we
have [¢" — 1| < |[¢™T™ — 1], 0 < ¢mtnn(C) < 1, and hence ¢ € Qpnp-

The uniqueness of 6 € I}, ,, , shall follow if we show that

0
—Arg(quJrn,n(O) <O0for¢e Qm’”’v’

00
or equivalently,
L6 40(0)) < 0 for € € Qs
For z = el € D, let X
p(#,0) := _fsind o /7.0,
1—17cosf

where Z denotes the point with the complex coordinate z. Then we have
1= gminp?
Re(1 —¢")Re(1 — ()

Im(d’m—f—n,n(()) = [)(Tern’ (m + n)a) - pA(Tnv TL@)

Let E={z€D: |z—i<it={z= fell : 7 < cos 0} be a disk consisting of the points Z such
that cos ZOZAy < 0.

Lemma 4.16. (" € E if ( € Qmn,o-

Proof. 1t is easy to see that for z € C, there exists A > 1 such that |A(z — 1) + 1| < ||, if and
only if z € E.

Let A = (¢™*" —1)/(¢"™ —1). Then we have A > 1 and [("™"| = |A\((" — 1) + 1| < |[¢"]. Thus
we obtain (" € E. O

Lemma 4.17. %Im(¢m+n7n(§)) <0, if ¢ =reé? e Qmmw and (™ ¢ E.

Proof. For z = 7€'’ we have %(f,é) = Heosb=h) oy s e B e % > 0. Thus, if ( = r¢'? € Qi

(1—7 cos §)2’
and ("™ ¢ E. we obtain

D, s ap
— (™™ (m+n)f) <0< —(r",nb),
ae(r (m +n)6) 89(7" ng)

and hence %Im(qﬁm,n(g‘)) < 0. O
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Now suppose that ( € Qe and ("™ € E. For z = feld ¢ FE, consider two coordinate
systems as follows.
¥1 :E_’R27 Qpl(z):(f7é):(|z|7argz)a
o . Fsind o4
pa: E =R ¢a(z) = (F,p) = (F, ———), where (7,0) = ¢1(2).
1—7cosf

The derivative of the coordinate changes are written as

or or 1 0

gg gg = sinf ] #(cos — f) ,
Y (1 —#cosh)? (1—+cosh)?

or o : :

87:’ 8p: o o A _oa N2

9 a0 | = sanﬁ (1 7 cos 0)

o 0p 7(cosf —7)  7(cosf — 7)

Lemma 4.18. Let 0 <7 <1y < 1,0 < p1 < p2 and suppose that (r;, pj) € p2(E), i,j =1,2.
Then . ) R .
0 0 0 0
gA(’f’z Pz)gA(T’hPl) gA(mm)gA(n,pg)

Proof. The ratio 2793(7"2’ p)/ g—g(rl, p) is a strictly decreasing function of p, since

) o0 a0
1 5) — 1 )
8A(Og 8A(T27p) Og aﬁ(rlﬂp))
2 52 o0
= —=log (7, p) df
r OpOF op

dr < 0.

B /’"2 (1 — 7 cos0)2(—2 + 7 cos f + 72) sin 0
r 7P2(7 — cos f)*

O]

Fix 0 < 7 < 1. Let ppin(f) == p(r™*", (m + n)d), pu(0) := p(r",nd) for § € I, ,,, and
consider their inverse functions 6,,1,(p), 0, (p) respectively. Note that

d 106

d 1 89( mtn, p), %en( p) = - 8A( mp). (4.3.9)

dp

Om-+n(p) = m+nop

Lemma 4.19. %Im(¢m+n,n(C)) < 0; Zf( = rOeieO € Qm,n,v; 90 S Imn ) and <m+n e F.

Proof. Denote by po := pm+n(6o) = pn(6p). Suppose that %Im(¢m+n7n(<)) > 0 by contradic-
tion. This implies that d%ﬁern(@o) > d%ﬁn(Go). By considering their inverse functions, we have
dd Omtn(Po) < —6 (po). Lemma 4.18 and (4.3.9) imply that

d d
(D) < —=0n(p), b < fo.
a5+ (h) < 0 (h) 0<p < po

The mean value theorem implies that |0,45n(00) — Omn ()] < [0n(po) — 0n(p)], 0 < p < po and
hence
Omtn(p) > On(p), 0= p < po.

0

However, we have 0,,1,(0) = 27T<(iﬁ?lv> < 0,(0) = 277(%”), a contradiction. This completes the

proof. O
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Re

Figure 4.14: Two arcs Q1,31, Q431, the radial line segment §(27/3), and two arcs @531 and
(Q2,3,—1, from left to right, all connecting the origin with the point e2m/3 (marked %)

Consequently, the function 0, : (0,1) — I, ,, , is well-defined. Finally we will show (4.3.8).
When sinnf = r", we have

pir™t" (m +n)0) — p(r", no)
r™ T (sin(m +n)f — r~™sinnf — r" sin mo)
- (1 —rmtmcos(m +n)f)(1 — r™ cosnb)
™t (sin(m 4+ n)f — 1 — r" sinm#)

- (1 — rm*7 cos(m +n)0)(1 — r™ cosnb) <0

The Intermediate Value Theorem implies that 0 < sinnf < r™ for 6 = 0y, 1, (1), s0

. bv
Him O () = 27 ().
This completes the proof of Theorem 4.15. O

Theorem 4.20. For each v #0, Q, = U(m,n)eR Qmnw s a dense subset of D.

Proof. We may suppose that v > 0. It is shown that the closure of ), contains any radial line
segments §(2mwbv/n) for n > 2v, 0 < b < n, such that n, b are relatively prime.

Let m > a > 0 be integers such that a/m < b/n and mb — na = 1. The curve Qm4jnn,v;
for each j > 0, connects the origin with the n-th root of unity €27*/"  Since the length of the
interval I}, ., ., tends to 0 as j — oo, the curves Qmjnn,o accumulate to 6(2wbv/n). This

completes the proof. O

Figure 4.14 shows four arcs Q13,1, Q4,3,1, @5,3,—1 and Q2,3 1 from left to right, together with
the radial line segment §(27/3), all connecting the origin with the point ¢>™/3 (marked 1). This
indicates that the arcs Q143;3,1 accumulate to 6(27/3) as j — oo monotonically from left, while
the arcs Q243;,3,—1 accumulate to §(27/3) as j — oo monotonically from right.

4.3.5 Triangles which admit spiral multiple tilings with non-opposed parastichy
pairs

In this section, we consider shapes of triangular spiral multiple tilings with non-opposed parastichy
pairs.
Let

A ={(61,60) € I : 01,02 >0, 01+ 20, <7} C A,
A" :{(91,02)612: 01,05 <0, 91+292>—7T}CA/,,
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and consider the mapping

Argm,n :D \ R— 127 Argm,n(() - (Arg(Cm), Arg(Cn))

where m,n > 0 are relatively prime integers. Theorem 4.13 and Lemma 4.14 imply that
Arg,, ,(Qmnw) denotes the set of shapes of the triangles that admit spiral multiple tilings (4.3.6)
of multiplicity v with the non-opposed parastichy pair {m,n}.

Theorem 4.21. For each v > 0, Lj, == U n)er AT8mn(@mnw) i a nowhere dense subset of
AU

Proof. Let ¢ € Qumpno. By Lemma 4.4, we have sinnf = r™ sin(m + n)f — r™* " sin m6, which
implies that |[Ap,Anin] = 7™AgAmin| — 7™ |AgA,,| by the Law of Sines. Thus we obtain
A Ansn] < |[AoAntnl, 1., sinnf < sin(m — (m + n)f), and hence 2#(%) <m— 2%(%
Arg,, ,(¢) € AL

Fixv > 0andlet K C Al be a compact set. We shall show that K intersects Arg,, ,,(Qmn.v) C
4 for only finitely many pairs (m,n). If (61,62) € K N Arg,, ,(Qmno), then we have

m,n,v

nl; — mby = 2mv and there exists 0 < r < 1 such that

), SO

sin(fy + 602) = r"sinf; + r~ " sin Os. (4.3.10)
However, consider the function

f(01,02,m) = Oingl(r(m%”m)/@l sin @) 4+ r~™sin 6y). (4.3.11)

The minimum of the right hand side of (4.3.11) is attained at

0
. m# sin 0o m(0y +912)+27rv

~ \(mbs + 27v) sin Oy ‘
By taking the limit as m — oo, we have

01 )

e - 0o\ 71+02 ;1\ 71102
lim (61,0, m) = (sin 1) 777 (sin fa) 7110 <02> S <91) 1403

> Sin(01 + 92),

on (01,62) € A’l. Since K is compact, we have f(61,02,m) > sin(61 + 02), (61,02) € K, for a
sufficiently large m > 0. Thus (4.3.10) hold for only finitely many m > 0.

If m is fixed, K intersects the line segment £, , , for only finitely many n > 0, because £, ,, ,
tend to the #s-axis as n — oo. This completes the proof. O

Theorem 4.22. The union L' := U, L}, = Upso, (mn)er A8mn(@mnw) is a dense subset of
AL

Proof. We shall show that L’ contains any rational point (0;,62) € Al such that 0,6, € 27Q.
First we observe that
sin(m — 61 — 03) > sin s

since (01,02) € A’L. Let m,n > 0 be relatively prime integers such that v = (nf; — mbs)/27 is
an integer. Let 0 < r < 1 be sufficiently close to 1 such that

sin(m — 61 — 02) > r~ " sin fs.
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Figure 4.15: (a) The curve Im(¢73(¢)) = 0 in Figure 4.12 (b) redrawn. The arc (04,3, connects
the point €2™/3 with the origin. Two marks % denote the generators ¢ = (0.8822- - )e2mi(0:339)
and ¢ = (0.6984 - - - )e?>™(0:339) for the tilings in figure 4.16. (b) The solid line arg, 3(Q4,3,1) in the
stripe ¢4,3(I) N A’ has an endpoint e in the interior of A’}

(a) (b)

Figure 4.16: Spiral tilings with the non-opposed parastichy pair {4,3} consisting of triangles of
the same shape. (a) ¢ = (0.8822---)e>™(0339)  (b) ¢ = (0.6984 - - - )e2m(0:339),
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(a) (b)

Figure 4.17: Spiral tilings by the right triangles with angles 30°, 60°, 90°, with a non-opposed
parastichy pair {2,7}. The divergence angle is § = 77 /6. These two tilings are topologically
equivalent to each other. (a) r =0.8803---. (b) r =0.7535---.

Take k > 0 sufficiently large that
sin(m — 61 — 62) > PR gin 0y + 7 sin 6,

and that 0 = ((n + mk)0; — mbs)/2m is still an integer. Since sin(m — 0; — 62) < sin 6 + sin s,
the Intermediate Value Theorem implies that we can re-choose r < ¥ < 1 such that

fn—&—mk

sin(7r — 01 — 92) = sin @ + 7™ sin 05.

Hence (61, 02) € Arg,, sk (Qm.ntmk,5), which completes the proof. O

Figure 4.12 (b) and Figure 4.15 (a) show (04,31 as an arc connecting the origin and e2™/3 Tts
complex conjugate is Q43 —1. Two marks % on Q431 in Figure 4.15 (a) denote the generators
of spiral tilings with the non-opposed parastichy pair {4,3} consisting of triangles of the same
shape, figure 4.16. Figure 4.15(b) shows the line segment arg, 3(Q4,3,1) in the stripe ¢4 3(1) VA’
This indicates that the mapping Q431 — arg473(Q4,371) is 2 to 1, with a turning point e in this
figure.

4.3.6 Examples of triangles which admit spiral multiple tilings with opposed paras-
tichy pairs

By Theorem 4.13, we obtain the following example of triangular spiral multiple tilings with non-
opposed parastichy pairs.

(i) Spiral tilings by right triangles with angles 30°, 60° and 90°: The right triangle with
angles 30° and 60° has a spiral tilings with a non-opposed parastichy pair {2,7}, since
7.5 —2-% =2m. See Figure 4.17. The divergence angle §§ = 77/6 is determined by the
equations arg(¢?) = 7/3 and arg(¢") = 7/6. The equation v/3r% — 2r?2 + 1 = 0 has two
positive roots 7 = 0.8803 - -- and 0.7535- - -.

(ii) Spiral tilings by right triangles with angles 45°, 45° and 90°: The right triangle with angles
45° and 45° has a spiral tilings with a non-opposed parastichy pair {1, 9}, since 9-7—7 = 2.
See Figure 4.18. The divergence angle § = 7/4 is determined by the equations arg(¢!) = 7 /4
and arg(¢?) = 7/4. The equation 7% — \/2r + 1 = 0 has two positive roots r = 0.8553 - - -

and 0.7437---.
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(a) (b)

Figure 4.18: Spiral tilings by the right triangles with angles 45°, 45°, 90°, with a non-opposed
parastichy pair {1,9}. The divergence angle is § = 7/8. These two tilings are topologically
equivalent to each other. (a) 7 =0.8553---. (b) r =0.7437---.

4.4 Shape limit of triangular spiral multiple tilings with opposed parastichy
pairs

Let v > 0, 0 € (—mv,mv]. In this section we suppose that 6/27v is a fixed irrational number.
In the continued fraction expansion of = #/27wv, we defined the sequences ¢; and g;x, j > 0,
0 < k < ajq1, in Section 2.3. For each j > 0 and 0 < k < aj41, denote by a;r/mjr < bjr/nji a
pair of convergents of x = 6/2mv such that {m;x,n;r} = {g;,q;r}. Suppose that j is sufficiently
large that (27T(m2j;f6),27r<n]2f9>.) € Ay. Let 0 < r = rj; < 1 be the root of the equation
Jmno(r) =0, and (jr = rj,ke‘e. Then we obtain a triangular spiral (multiple) tiling with an
opposed parastichy pair {m,n} = {m;,n;x}.

Lemma 4.23. Arg({?’ék) — 0 asj — oo.

Proof. It is known that

0 by C
G R
TV g q;

where the constant C' > 0 is independent of j. Hence

— 0

4.k a | _ 40, _ o 49 ,
Arg(C)] < |Ara(¢)l = 2l 20| = 2m BT o <

as j — o0. O

Lemma 4.24. Let v > 0, § € (=7, x|, and suppose that 0/2wv is an irrational number. Then

the angles é(l,(ﬁ’k, %") and Z(C;n,g’k, ank, 1) tend to 0 as j — oo.

Proof. Since (4.1.2) generated by (jx is a triangular spiral multiple tiling of multiplicity v with
an opposed parastichy pair {m ,n;x}, the four points C;n,g’k, 0, C%’k, 1 lie on a same circle. Thus
we have

Z(L,GN Gt = 2(1,0,¢3°) = Arg(GR") — 0,

Z(ETR A1) = Z(C9,0,1) = Arg(¢(T4) — 0
as j — oo. [

Suppose that 6/2mv is a quadratic irrational number.
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Lemma 4.25. Suppose that 0/27v is a quadratic irrational number. Then we have

3

C
0<1—rjp < —
Mk

where C > 0 is a constant independent of j, k.

Proof. Since 0/27v is a fixed quadratic irrational number, the coefficients a; are bounded, and
hence the ratios n;x/m; are also bounded. Moreover, there exist constants C1,Cy > 0, inde-
pendent of j > 0, 0 < k < aj41, such that

Cy
5
9k

0 pik

Cy
2mv qjk

-
9k

This implies that

Cro | mat ‘< Cov, (4.4.1)

Mk 2 m; k

We adopt a notation ¢ = O(m™*) when there exists a constant C independent of j, k such that
| < C/m3,. Then we have

. o mykf (2m)° mygb g -5y _ -1
sinmy 10 = 27 5y ) — 5 ( o )” + O(mj,k) = O(mj,k)v
271')2 m<7k0 2w 4 m-,ke _ _
cos mj,k’e —1_ ( 5 < 2j7r >2 + ( 24) < 2]7r >4 + O(T)’LLS) =1+ O(m]’z)

By the equation fm , n,,(7,0) = 0, we have
(i}, — cosmy 0) sinn k0 — (1), — cosny;k0) sinm; k0 = 0,
and so we have
(rf =1 = 0(m;)0(mi ) — (1 — 1 = O(m;3))O(mj;) = 0

Thus we obtain L
O(mj,k)

mje—1 o njkr—1l o °
Dm0 Tiet 2o Tk

Since we have 1 —rj; < C/mjz-k, that is, this implies that

1—r=

myk—1 mj—1

C mjk C
Dotz Y (- =) =21 = (1= —)%) = C'myx
s=0 s=0 Mk ¢ Mk

; ,i’) Let tj, =1 — ;5. Then we have

with C” > 0. Hence we obtain 1 —r;, = O(m

mj.k

_9 n;, _9
rint = 1+ O(mj,k), Tjik =14+ O(mj,k).

. . . mj’k 1 . njyk _
That is, lim; TR = lim;; o0 Tik = 1.

Let R(6,v) be the set of ratios (Cﬁk — 1)/((;2]’“ —1)for j >0and 0 <k <aj. Let

Q(0,v) :=Q(R(0,v))

be the limit set, i.e., the set of the accumulation points, of R(6,v).
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Figure 4.19: A triangular spiral tiling with the divergence angle 6 = 277. (a) r = 0.9965 - - - and
the opposed parastichy pair is {13,8}. (b) Local view around the tile Tj.

Theorem 4.26. Suppose that 0/2mv is a quadratic irrational number. Then we have
Q0,0) = {(wep1 — k)T 1 1<s<d,0<k < b} (4.4.2)
In particular, it is a finite set.

Proof. Since 8/2mv is a quadratic irrational number, we have (4.4.1). So we have

"k . .
Gr —L  —14r"cosnf +ir"sinnf
(]mkﬂ’c —1  —1+rmcosmf + ir™sinmé

—14+14+0(m™%) +i(2n (%) + O(m=2))
—14+1+0(m=2) +i(27(22) + O(m~2))
i(52) +O0(m™?)

i +O(m=2)

(1+0(m™))

(1+0(m™1))

V)
a|

FEINE SEINE

N
2

~— o~~~

27

~ |~ ~ |~

2mi

—
S(ES

= (1+0(m™)),

—~

[

Y2
~

where we denote by m = mj, n = n;. Thus it is written as

njk a0\ (1’
e <<2’T“>> (1+ 0™,

mj K =
G —1

By using the continued fractions, we have

(L0, 40

= —laiv1 —k,ai10,ai13,...
27 27w []-i- y Y1425 Y43, ]

_[bs-l—l - k;, bs+27 bs+37 .. ]
= —(wst1—k)
for j sufficiently large, and 0 < k < bs11. Thus we obtain (4.4.2). O
Corollary 4.27. If the coefficients aj = 1 of the continued fraction expansion of 0/2mv for
sufficiently large j, then Q(0,v) = {—7,—1/7}.
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Proof. Since the golden section has a purely periodic continued fraction expansion 7 = [1,1,...] =
[1,1,1], we have

(B = -1, =

2mv ' V21w R T

for sufficiently large j. O

Figure 4.19 shows a triangular spiral tiling generated by z = re?™7, r = 0.9965, 7 = (1++/5)/2,
with an opposed parastichy pair {8, 13}, and the ratio (28 —1)/(21? — 1) = —1.348 + 0.857i. If we
fix the divergence angle 277, and consider larger the Fibonacci numbers as an opposed parastichy
pair, for example {55,89}, then we have r = 0.999989, and so the ratio (2°° — 1)/(z% — 1) =

—1.61208 + 0.13355i1 gets closer to —7 = —1.618. By Corollary 4.27, the limit of these ratios is
—T.
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Chapter 5

Concluding remarks

In Part I, Part IT and Part III, we could give theoretical frameworks about the helical Voronoi
tilings on the cylinder, the Voronoi spiral tilings and the triangular spiral tilings. As prospects
of the thesis, we have the following two studies: A mathematical description of flat-foldable
for triangular spiral multiple tilings as the rigid origami and a mathematical application of the
theoretical framework of the spiral tilings for geometrical phyllotactic Voronoi tilings based on
the Vogel model.

One of the prospects is to consider the following question about origami developments for
the triangular spiral multiple tilings. Can we fold a triangular spiral multiple tiling as the rigid
origami ¢ Computational simulations of triangular spiral multiple tilings show that the Fibonacci
tornado is flat-foldable (See Figure 5.1). Moreover, for the rigid origami of the triangular spiral
multiple tilings, we have the following questions. How flexible are rigid origami sheets of triangular
spiral multiple tilings 7 Which rigid origami sheets for the triangular spiral multiple tilings are
flat-foldable ? In other words, we need a necessary and sufficient condition for flat-foldable of the
triangular spiral multiple tilings by the rigid origami sheets.

(a) (b) (c)

Figure 5.1: A computational simulation for the Fibonacci tornado in Figure 4.5. (a) A rigid
origami sheet. (b) Side view from right, before squash. (¢) Top-down view, after squashed.

Another of the prospects is to explain the combinatorial structures of geometrical phyllotactic
Voronoi tilings based on the Vogel model. The theoretical frameworks of the helical Voronoi tilings
on the cylinder and the Voronoi spiral tilings can be applied to this study.
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