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1 Introduction

We are interested in wave-pinning in a reaction-diffusion model for cell
polarization proposed by S.Ishihara, M.Otsuji and A.Mochizuki[2],M.Otsuji,
et al.[12] and Y.Mori, A.Jilkine and L.Edelstein-Keshet[11].

The wave-pinning is such a phenomenon that a wave of activation of
the species is initiated at one end of the domain, moves into the domain,
decelerates, and eventually stops inside the domain, forming a stationary
front.

We investigate a model proposed in [11]. The model is

(TP)


εWt = ε2Wxx +W (W − 1)(V + 1−W ) in (0, 1)× (0,∞),

εVt = D Vxx −W (W − 1)(V + 1−W ) in (0, 1)× (0,∞),

Wx(0, t) = Wx(1, t) = 0, Vx(0, t) = Vx(1, t) = 0 in (0,∞),

W (x, 0) = W0(x), V (x, 0) = V0(x) in (0, 1),

where W = W (x, t) denotes the density of an active protein, V = V (x, t)
denotes the density of an inactive protein, ε and D are diffusion coefficients,
W0(x) denotes the initial density of the active protein, and V0(x) denotes
the initial density of the inactive protein.

It is easy to see that the mass conservation∫ 1

0
(W (x, t) + V (x, t))dx =

∫ 1

0
(W0(x) + V0(x))dx = m

holds, where m is the total mass determined by the mass of the initial
densities W0(x) and V0(x).

Letting D → ∞ in (TP), we formally obtain the following time depen-
dent limiting equation:

(TLP)



εWt = ε2Wxx +W (W − 1)(Ṽ + 1−W ) in (0, 1)× (0,∞),

ε
dṼ

dt
= −

∫ 1

0
W (W − 1)(Ṽ + 1−W )dx in (0,∞),

Wx(0, t) = Wx(1, t) = 0 in (0,∞),

W (x, 0) = W0(x) in (0, 1), Ṽ (0) = Ṽ0,

where W = W (x, t), Ṽ = Ṽ (t) is the density depending only on t. W0(x)
denotes the initial density, and Ṽ0 denotes an initial constant density.

Owing to the mass conservation, the stationary problem of (TP) can be
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reduced to the following Neumann problem with a nonlocal constraint:

(SP)



ε2Wxx +W (W − 1)(V + 1−W ) = 0 in (0, 1),

D Vxx −W (W − 1)(V + 1−W ) = 0 in (0, 1),

W (x) > 0, V (x) > 0 in (0, 1),

Wx(0) = Wx(1) = 0, Vx(0) = Vx(1) = 0,∫ 1

0
(W (x) + V (x))dx = m,

where W = W (x), V = V (x), and m is a given initial total mass determined
by initial densities.

Straight understanding of a stationary limiting problem for (TLP) is

ε2Wxx +W (W − 1)(Ṽ + 1−W ) = 0 in (0, 1),∫ 1

0
W (W − 1)(Ṽ + 1−W )dx = 0,

Wx(0) = Wx(1) = 0,

W (x) > 0 in (0, 1), Ṽ > 0,∫ 1

0
W (x)dx+ Ṽ = m.

The second equation automatically holds from the first and third equation.
Hence the above system is equivalent to

ε2Wxx +W (W − 1)(Ṽ + 1−W ) = 0 in (0, 1),

Wx(0) = Wx(1) = 0,

W (x) > 0 in (0, 1), Ṽ > 0,∫ 1

0
W (x)dx+ Ṽ = m.

For simplicity we concentrate on monotone increasing solutions, since we
can obtain other solutions by reflecting this kind of solutions. Thus, we get

ε2Wxx +W (W − 1)(Ṽ + 1−W ) = 0 in (0, 1),

Wx(0) = Wx(1) = 0,

W (0) > 0, Wx(x) > 0 in (0, 1), Ṽ > 0,∫ 1

0
W (x)dx+ Ṽ = m.

Here it should be noted that we may omit the condition W (0) > 0, since
this condition follows from other conditions. Thus we obtain a stationary
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limiting problem as

(SLP)



ε2Wxx +W (W − 1)(Ṽ + 1−W ) = 0 in (0, 1), (1.1)

Wx(0) = Wx(1) = 0, (1.2)

Wx(x) > 0 in (0, 1), Ṽ > 0, (1.3)∫ 1

0
W (x)dx+ Ṽ = m, (1.4)

where m and ε are given positive constants, W = W (x) is an unknown
function, and Ṽ is an unknown nonnegative constant.

Interesting bifurcation diagrams are obtained in [11] by numerical com-
putations. Kuto and Tsujikawa [6] obtained several mathematical results
for (SLP) with suitable change of variables(see, also [4] and [5]). We have
obtained the exact expressions of all the solutions for it by using the Jacobi
elliptic functions and complete elliptic integrals in Mori, Kuto, Nagayama,
Tsujikawa and Yotsutani [8]. The method to obtain all the exact solutions
essentially based on the method which started in Lou, Ni and Yotsutani
[7]. It is developed by Kosugi, Morita and Yotsutani [3] to investigate the
Cahn-Hilliard equation treated in Carr, Gurtin and Semrod [1].

Now, let us introduce an auxiliary problem to investigate (SLP). Let
Ṽ > 0 be given, let us consider the problem

(AP; Ṽ)


ε2Wxx +W (W − 1)(Ṽ + 1−W ) = 0 in (0, 1), (1.5)

Wx(0) = Wx(1) = 0, (1.6)

Wx(x) > 0 in (0, 1). (1.7)

The following fact is fundamental (see, e.g. Smoller and Wasserman [14],
Smoller [13], and Theorem 2.1 in [8]).

There exists a solution of (AP;Ṽ ), if and only if (Ṽ , ε2) ∈ G, where

G :=

{
(Ṽ , ε2) : 0 < ε2 <

Ṽ

π2

}
. (1.8)

Figure 1.1: Existence region of solution for (AP;Ṽ )
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Moreover, the solution is unique, is represented by elliptic integrals, and
has properties

0 < W (x; Ṽ , ε2) < Ṽ + 1, (1.9)

W (x; Ṽ , ε2) = Ṽ + 1− Ṽ ·W
(
1− x;

1

Ṽ
,
ε2

Ṽ 2

)
. (1.10)

Let us define the global bifurcation sheet S by

S :=
{(

Ṽ , ε2,m(Ṽ , ε2)
)
: (Ṽ , ε2) ∈ G

}
, (1.11)

where

m(Ṽ , ε2) :=

∫ 1

0
W (x; Ṽ , ε2)dx+ Ṽ . (1.12)

We note that

m(Ṽ , ε2) = 2Ṽ + 2− Ṽ m

(
1

Ṽ
,
ε2

Ṽ 2

)
for any Ṽ > 0, ε > 0 (1.13)

by (1.10), and which implies

m(1, ε2) = 2 for any ε2 ∈
(
0,

1

π2

)
. (1.14)

We see from Theorem 4.2 that m(Ṽ , ε2) is represented by complete elliptic
integrals. For given m > 0, level curve with the height m of the global bifur-
cation sheet S corresponds to the bifurcation diagram in the plane (Ṽ , ε2)
for (SLP) with given m. Thus, for each m, we can obtain the bifurcation
diagram by {

(Ṽ , ε2) ∈ G : m(Ṽ , ε2) = m
}
. (1.15)

In Figure 1.2, we show the global bifurcation sheet and bifurcation dia-
grams of (SLP) which is obtained numerically in Section 9. In this paper we
prove the following Theorems by obtaining representation formula for the
global bifurcation sheet and analyzing it.

Theorem 1.1 Let 0 < m ≤ 1 be given. There exists no solution of (SLP).
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Figure 1.2: Global bifurcation sheet for (SLP)

Figure 1.3: Bifurcation diagrams for each m
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Theorem 1.2 Let 1 < m < 2 be given. The following holds.

(i) There exists no solution of (SLP) for Ṽ ∈ (0, (m− 1)/2] ∪[m−1, 1]
∪ [m,∞).

(ii) There exists the unique ε(Ṽ ) ∈ (0,
√
Ṽ /π) such that W (x; Ṽ , ε2(Ṽ ))

is a solution of (SLP) for Ṽ ∈ ((m− 1)/2, m− 1). Moreover, ε(Ṽ )
is continuous on [(m− 1)/2, m− 1] by defining ε ((m− 1)/2) = 0,
ε (m− 1) =

√
m− 1/π.

(iii) There exists the unique ε(Ṽ ) ∈ (0,
√
Ṽ /π) such that W (x; Ṽ , ε2(Ṽ ))

is a solution of (SLP) for Ṽ ∈ (1, m). Moreover, ε(Ṽ ) is continuous
on [1, m], by defining ε (1) = 0, ε (m) = 0.

We show several profiles of W (x; Ṽ , ε2(Ṽ )) corresponding to (Ṽ , ε2(Ṽ )) as-
sured by Theorem 1.2 in Figure 1.4.

Figure 1.4: Profiles of W (x; Ṽ , ε2) for 1 < m < 2.
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Theorem 1.3 Let m = 2 be given. The following holds.

(i) There exists no solution of (SLP) for Ṽ ∈ (0, 1/2] ∪ [2,∞).

(ii) There exists the unique ε(Ṽ ) ∈ (0,
√
Ṽ /π) such that W (x; Ṽ , ε2(Ṽ ))

is a solution of (SLP) for Ṽ ∈ (1/2, 1). Moreover, there exists the
unique ε∗ = 0.23529 · · · such that ε(Ṽ ) is continuous on [1/2, 1] by
defining ε (1/2) = 0, ε(1) = ε∗.

(iii) For Ṽ = 1, there exists no solution of (SLP) for ε ∈ [1/π,∞), and
there exists the unique solution W (x; 1, ε2) of (SLP) for ε ∈ (0, 1/π).

(iv) There exists the unique ε(Ṽ ) ∈ (0,
√
Ṽ /π) such that W (x; Ṽ , ε2(Ṽ ))

is a solution of (SLP) for Ṽ ∈ (1, 2). Moreover, ε(Ṽ ) is continuous
on [1, 2] by defining ε(1) = ε∗, ε (2) = 0.

We show several profiles of W (x; Ṽ , ε2(Ṽ )) corresponding to (Ṽ , ε2(Ṽ )) as-
sured by Theorem 1.3 in Figure 1.5.

Figure 1.5: Profiles of W (x; Ṽ , ε2) for m = 2.
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Theorem 1.4 Let 2 < m < 3 be given. The following holds.

(i) There exists no solution of (SLP) for Ṽ ∈ (0, (m− 1)/2]∪ [1, m −
1] ∪ [m,∞).

(ii) There exists the unique ε(Ṽ ) ∈ (0,
√

Ṽ /π) such that W (x; Ṽ , ε2(Ṽ ))
is a solution of (SLP) for Ṽ ∈ ((m− 1)/2, 1). Moreover, ε(Ṽ ) is
continuous on [(m− 1)/2, 1] by defining ε ((m− 1)/2) = 0, ε (1) = 0.

(iii) There exists the unique ε(Ṽ ) ∈ (0,
√

Ṽ /π) such that W (x; Ṽ , ε2(Ṽ )) is
a solution of (SLP) for Ṽ ∈ (m− 1, m). Moreover, ε(Ṽ ) is continuous
on [m− 1, m] by defining ε (m− 1) =

√
m− 1/π, ε (m) = 0.

We show several profiles of W (x; Ṽ , ε2(Ṽ )) corresponding to (Ṽ , ε2(Ṽ )) as-
sured by Theorem 1.4 in Figure 1.6.

Figure 1.6: Profiles of W (x; Ṽ , ε2) for 2 < m < 3.
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Theorem 1.5 Let m ≥ 3 be given. The following holds.

(i) There exists no solution of (SLP) for Ṽ ∈ (0,m− 1] ∪ [m,∞).

(ii) There exists the unique ε(Ṽ ) ∈ (0,
√

Ṽ /π) such that W (x; Ṽ , ε2(Ṽ )) is
a solution of (SLP) for Ṽ ∈ (m− 1, m). Moreover, ε(Ṽ ) is continuous
on [m− 1, m] by defining ε (m− 1) =

√
m− 1/π, ε (m) = 0.

We show several profiles of W (x; Ṽ , ε2(Ṽ )) corresponding to (Ṽ , ε2(Ṽ )) as-
sured by Theorem 1.5 in Figure 1.7.

Figure 1.7: Profiles of W (x; Ṽ , ε2) for m ≥ 3.

This paper is organized as follows.
In Section 2 we give the definition for the elliptic functions and the com-

plete elliptic integrals as a preliminary. In Section 3 we state Proposition 3.1
and Theorems 3.1-3.10 which are used for the proofs of main theorems, and
give proofs of Theorems 1.1-1.5. Proposition 3.1 gives limits of m(Ṽ , ε2) as
ε2 → 0 and Ṽ /π2. Theorem 3.1 gives monotonicity of m(Ṽ , ε2) in ε. In
Section 4 we show Theorems 4.1 and 4.2, which represent all exact solutions
for (AP ; Ṽ ) and an expression of m(Ṽ , ε2). In Section 5 we show a proof of
Proposition 3.1. In Section 6 we give a proof of Theorem 3.1 by using Propo-
sitions 6.1-6.6. Propositions 6.1 and 6.2 give the expression of ∂m(Ṽ , ε2)/∂ε
by using parameters h and s. Propositions 6.3 and 6.4 give properties of
J (h, s) whose positivity gives negativity of ∂m(Ṽ , ε2)/∂ε. Propositions 6.5
and 6.6 give that ∂J (h, s)/∂s has the unique zero. In Section 7 we give a
proof of Proposition 6.6. In Section 8 we explain the existence and unique-
ness of secondary bifurcation point, which is stated in Theorem 3.8. In
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Section 9 we explain numerical results about the stability of solutions of
(SLP). Finally, we show conclusion remarks in Section 10.
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2 Preliminary

In this section, we give the definition for the elliptic functions and the
complete elliptic integrals which are used in this paper. Let sn(x, k) and
cn(x, k) be Jacobi’s elliptic functions. The following properties holds:

sn−1(z, k) =

∫ z

0

1√
1− k2ξ2

√
1− ξ2

dξ (−1 ≤ z ≤ 1, 0 < k < 1),

sn2(x, k) + cn2(x, k) = 1, cn(0, k) = 1.

Let k ∈ [0, 1) and −1 < ν < 1. The complete elliptic integrals of the
first, second and third kind are defined by

K(k) :=

∫ 1

0

1√
1− k2t2

√
1− t2

dt, E(k) :=

∫ 1

0

√
1− k2t2√
1− t2

dt,

and

Π(ν, k) :=

∫ 1

0

1

(1 + νt2)
√
1− k2t2

√
1− t2

dt,

respectively. We see that K(k) is monotone increasing in k,

K(0) =
π

2
, lim

k→1
K(k) = ∞

and E(k) is monotone decreasing in k,

E(0) =
π

2
, lim

k→1
E(k) = 1.

We show graphs of complete elliptic integrals.

Figure 2.1: complete elliptic integrals K(k), E(k) and Π(3/4, k).

The following formulas for the complete elliptic integrals are fundamen-
tal:

d

dk
K(k) =

E(k)

(1− k2)k
− K(k)

k
.

d

dk
E(k) =

E(k)

k
− K(k)

k
.

∂

∂k
Π(ν, k) =

kE(k)

(k2 + ν)(1− k2)
− kΠ(ν, k)

k2 + ν
.

∂

∂ν
Π(ν, k) =

(k2 − ν2)Π(ν, k)

2(1 + ν)(k2 + ν)ν
− K(k)

2(1 + ν)ν
+

E(k)

2(1 + ν)(k2 + ν)
.
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d

dh
K(

√
h) =

E(
√
h)− (1− h)K(

√
h)

2h(1− h)
,

d

dh
E(

√
h) =

E(
√
h)−K(

√
h)

2h
.

d

dH
K(
√
1−H2) =

E(
√
1−H2)−H2K(

√
1−H2)

H(1−H2)
.

d

dH
E(
√

1−H2) =
H(K(

√
1−H2)− E(

√
1−H2))

1−H2
.

It is easy to see that the following inequalities hold.

Lemma 2.1 It hold that

√
1− h <

E(
√
h)

K(
√
h)

< 1− h

2
< 1 (0 < h < 1), (2.1)

and

H <
E(

√
1−H2)

K(
√
1−H2)

<
1 +H2

2
< 1 (0 < H < 1). (2.2)

We show graphs of inequalities (2.1) and (2.2).

Figure 2.2: Profiles of inequalities (2.1).
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Figure 2.3: Profiles of inequalities (2.2).
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3 Key theorems and proofs of main theorems

In this section we show crucial results of the paper which are basis of
Theorems 1.1-1.5.

3.1 Properties of global bifurcation sheet

The function m(Ṽ , ε2) defined by (1.12) has the following properties.

Proposition 3.1 Let Ṽ ∈ (0,∞) be fixed. The following holds:

(i) m(Ṽ , ε2) → Ṽ + 1 as ε2 → Ṽ /π2. (3.1)

(ii) For Ṽ ∈ (0, 1), m(Ṽ , ε2) → 2Ṽ + 1 as ε2 → 0. (3.2)

(iii) For Ṽ ∈ (1,∞), m(Ṽ , ε2) → Ṽ as ε2 → 0. (3.3)

The following theorems are the most crucial results of the paper.

Theorem 3.1 Let m(Ṽ , ε2) be the function defined by (1.12), and Ṽ > 0
be fixed. It holds that

∂m(Ṽ , ε2)

∂ε
< 0 for ε2 ∈

(
0,

Ṽ

π2

)
with Ṽ ∈ (0, 1), (3.4)

∂m(1, ε2)

∂ε
≡ 0 for ε2 ∈

(
0,

1

π2

)
, (3.5)

∂m(Ṽ , ε2)

∂ε
> 0 for ε2 ∈

(
0,

Ṽ

π2

)
with Ṽ ∈ (1,∞). (3.6)

Figure 3.1: Graph of ∂m(Ṽ , ε2)/∂ε.
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As applications of Proposition 3.1 and Theorem 3.1 which are prove in
Section 5 and 6, respectively. we obtain the following Theorems.

Theorem 3.2 Let 0 < m ≤ 1 be given. It holds that{
m(Ṽ , ε2) : Ṽ > 0, 0 < ε2 <

Ṽ

π2

}
= (1,∞). (3.7)

Theorem 3.3 Let 1 < m < 2 be given. The following holds:

(i) It holds that {
m(Ṽ , ε2) : 0 < Ṽ <

m− 1

2

}
= (1,m), (3.8){

m(Ṽ , ε2) : m− 1 < Ṽ < 1
}
= (m, 2), (3.9){

m(Ṽ , ε2) : Ṽ > m
}
= (m,∞). (3.10)

(ii) There exists the unique ε(Ṽ ) ∈ (0,
√

Ṽ /π) such that m(Ṽ , ε2(Ṽ )) = m
for Ṽ ∈ ((m− 1)/2, m− 1).

(iii) There exists the unique ε(Ṽ ) ∈ (0,
√

Ṽ /π) such that m(Ṽ , ε2(Ṽ )) = m
for Ṽ ∈ (1, m).

Theorem 3.4 Let m = 2 be given. The following holds:

(i) It holds that {
m(Ṽ , ε2) : 0 < Ṽ <

1

2

}
= (1, 2), (3.11){

m(Ṽ , ε2) : Ṽ > 2
}
= (2,∞). (3.12)

(ii) There exists the unique ε(Ṽ ) ∈ (0,
√

Ṽ /π) such that m(Ṽ , ε2(Ṽ )) = m
for Ṽ ∈ (1/2, 1).

(iii) For Ṽ = 1, there exists no solution of (SLP) for ε ∈ [1/π,∞), and
there exists the unique solution W (x; 1, ε2) of (SLP) for ε ∈ (0, 1/π).

(iv) There exists the unique ε(Ṽ ) ∈ (0,
√

Ṽ /π) such that m(Ṽ , ε2(Ṽ )) = m
for Ṽ ∈ (1, 2).
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Theorem 3.5 Let 2 < m < 3 be given. The following holds:

(i) It holds that {
m(Ṽ , ε2) : 0 < Ṽ <

m− 1

2

}
= (1,m), (3.13){

m(Ṽ , ε2) : 1 < Ṽ < m− 1
}
= (1,m), (3.14){

m(Ṽ , ε2) : Ṽ > m
}
= (m,∞). (3.15)

(ii) There exists the unique ε(Ṽ ) ∈ (0,
√

Ṽ /π) such that m(Ṽ , ε2(Ṽ )) = m
for Ṽ ∈ ((m− 1)/2, 1).

(iii) There exists the unique ε(Ṽ ) ∈ (0,
√

Ṽ /π) such that m(Ṽ , ε2(Ṽ )) = m
for Ṽ ∈ (m− 1, m).

Theorem 3.6 Let m ≥ 3 be given. The following holds:

(i) It holds that {
m(Ṽ , ε2) : 0 < Ṽ < m− 1

}
= (1,m), (3.16){

m(Ṽ , ε2) : Ṽ > m
}
= (m,∞). (3.17)

(ii) There exists the unique ε(Ṽ ) ∈ (0,
√

Ṽ /π) such that m(Ṽ , ε2(Ṽ )) = m
for Ṽ ∈ (m− 1, m).

Theorem 3.7 Let ε(Ṽ ) be appeared in (ii) and (iii) of Theorem 3.3. It has
the following properties.

ε(Ṽ ) −→ 0 as Ṽ ↓ m− 1

2
, (3.18)

ε(Ṽ ) −→ Ṽ

π2
as Ṽ ↑ m− 1, (3.19)

ε(Ṽ ) −→ 0 as Ṽ ↓ 1, (3.20)

ε(Ṽ ) −→ 0 as Ṽ ↑ m. (3.21)

Theorem 3.8 Let ε(Ṽ ) be appeared in (ii) and (iv) of Theorem 3.4. It has
the following properties.

ε(Ṽ ) −→ 0 as Ṽ ↓ 1

2
, (3.22)

ε(Ṽ ) −→ ε∗ as Ṽ ↑ 1, (3.23)

ε(Ṽ ) −→ ε∗ as Ṽ ↓ 1, (3.24)

ε(Ṽ ) −→ 0 as Ṽ ↑ 2, (3.25)
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where

ε∗ :=
1

K(
√
h∗)
√

2(2− h∗)
= 0.23529 · · · ,

and h∗ = 0.95285 · · · is the unique solution of 2− h

1− h
· E(

√
h)

K(
√
h)

− 8 = 0, (3.26)

0 < h < 1.

Here, E (h, s) is defined by (4.7), K(·) and E(·) are the complete elliptic
integrals of the first and second kind, respectively.

Theorem 3.9 Let ε(Ṽ ) be appeared in (ii) and (iii) of Theorem 3.5. It has
the following properties.

ε(Ṽ ) −→ 0 as Ṽ ↓ m− 1

2
, (3.27)

ε(Ṽ ) −→ 0 as Ṽ ↑ 1, (3.28)

ε(Ṽ ) −→ Ṽ

π2
as Ṽ ↓ m− 1, (3.29)

ε(Ṽ ) −→ 0 as Ṽ ↑ m. (3.30)

Theorem 3.10 Let ε(Ṽ ) be appeared in (ii) of Theorem 3.6. It has the
following properties.

ε(Ṽ ) −→ Ṽ

π2
as Ṽ ↓ m− 1, (3.31)

ε(Ṽ ) −→ 0 as Ṽ ↑ m. (3.32)

3.2 Proofs of Theorems 1.1-1.5, 3.2-3.6, 3.7, 3.9-3.10

We now gives proofs of Theorems 1.1-1.5, 3.2-3.6, 3.7, 3.9 and 3.10.
Proofs of Theorems 1.1-1.5. Theorem 1.1 follows from Theorem 3.2.
Theorem 1.2 follows from Theorem 3.3 and 3.7. Theorem 1.3 follows from
Theorem 3.4 and 3.8. Theorem 1.4 follows from Theorem 3.5 and 3.9. The-
orem 1.5 follows from Theorem 3.6 and 3.10.2

We give proofs of Theorems 3.2-3.6 by using Proposition 3.1 and The-
orem 3.1 which we prove later. It is easy to see that the following lemmas
hold.
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Lemma 3.1 Let Ṽ > 0 and m > 0. The following equivalence holds:

(i) It holds that{
Ṽ + 1 < m < 2Ṽ + 1,

0 < Ṽ < 1,
⇔


m− 1

2
< Ṽ < m− 1,

0 < Ṽ < 1,

⇔ max

(
0,

m− 1

2

)
< Ṽ < min (1,m− 1) .

(ii) It holds that{
Ṽ < m < Ṽ + 1,

Ṽ > 1,
⇔

{
m− 1 < Ṽ < m,

Ṽ > 1,

⇔ max (1,m− 1) < Ṽ < m.

Lemma 3.2 Let Dm be defined by

Dm :=

(
max

(
0,

m− 1

2

)
,min (1,m− 1)

)
∪ (max (1,m− 1) ,m) .

Then it holds that

Dm = ∅ for 0 ≤ m ≤ 1,

Dm =

(
m− 1

2
,m− 1

)
∪ (1,m) for 1 < m < 2,

Dm =

(
1

2
, 1

)
∪ (1, 2) for m = 2,

Dm =

(
m− 1

2
, 1

)
∪ (m− 1,m) for 2 < m < 3,

Dm = (m− 1,m) for m ≥ 3.

Proofs of Theorems 3.2-3.6. We obtain conclusions of Theorems 3.2-3.6
by using Proposition 3.1, Theorem 3.1, Lemma 3.1, Lemma 3.2 and (1.14).2

Proofs of Theorems 3.7, 3.9 and 3.10. We see from Proposition 3.1,
Theorem 3.1 and Dini’s Theorem that m(Ṽ , ε2) is continuous on G \ {(1, 0)}
by defining

G

(
Ṽ ,

Ṽ

π2

)
:= Ṽ + 1 (Ṽ ≥ 0),

G(Ṽ , 0) :=


2Ṽ + 1 (0 ≤ Ṽ < 1),

2 (Ṽ = 1),

Ṽ (Ṽ > 1),
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where

G :=

{
(Ṽ , ε2) : Ṽ ≥ 0, 0 ≤ ε2 ≤ Ṽ

π2

}
.

Thus we obtain conclusions of Theorems 3.7, 3.9 and 3.10.2

We will give a proof of Theorem 3.8 in Section 8.

20



4 All exact solutions for (AP ; Ṽ )

In this section, we show all exact solutions for (AP ; Ṽ ) and an expression
of m(Ṽ , ε2) defined in Section 1.

4.1 Representation formula

We show two theorems.

Theorem 4.1 Let Ṽ > 0. There exists a solution of (AP;Ṽ ), if and only if
(Ṽ , ε2) ∈ G, where G is defined by (1.8). Moreover, the solution is unique
and it has properties (1.9) and (1.10).

The solution W (x; Ṽ , ε2) is represented by

W (x, Ṽ , ε2) =
Ṽ + 2

3

+
1√
3

√
Ṽ 2 + Ṽ + 1 · β ·(1−hs)sn2(K(

√
h)x,

√
h)+α·cn2(K(

√
h)x,

√
h)

(1−hs)sn2(K(
√
h)x,

√
h)+cn2(K(

√
h)x,

√
h)

,

(4.1)

α := α(h, s) =
3hs2−2(1+h)s+1√

3h2s4−4(h2+h)s3+(4h2+2h+4)s2−4(h+1)s+3
,

(4.2)

β := β(h, s) =
−hs2−2(1−h)s+1√

3h2s4−4(h2+h)s3+(4h2+2h+4)s2−4(h+1)s+3
,

(4.3)

where (h, s) =
(
h(Ṽ , ε2), s(Ṽ , ε2)

)
is the unique solution of the following

system of transcendental equations

(E)



E(h, s) =
√
3 · ε√

Ṽ 2 + Ṽ + 1
, (4.4)

A(h, s) =
1

3
√
3
· (1− Ṽ )(2Ṽ + 1)(Ṽ + 2)(√

Ṽ 2 + Ṽ + 1
)3 , (4.5)

0 < h < 1, 0 < s < 1, (4.6)

where

E(h, s) :=
√

2s(1−s)(1−sh)/K(
√
h)√

3h2s4−4(h2+h)s3+(4h2+2h+4)s2−4(1+h)s+3
, (4.7)

A(h, s) :=
2(hs2−2sh+1)(hs2−2s+1)(1−hs2)(√

3h2s4−4(h2+h)s3+(4h2+2h+4)s2−4(h+1)s+3
)3 . (4.8)

Here, sn(·, ·), cn(·, ·) are Jacobi’s elliptic functions.
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Theorem 4.2 Let W (x; Ṽ , ε2) be the unique solution of (AP;Ṽ ), and m(Ṽ ,
ε2) is defined by (1.12). Then (1.13) and (1.14) holds.

Moreover, it holds that

m(Ṽ , ε2) =
4Ṽ + 2

3
+

1√
3
·
√

Ṽ 2 + Ṽ + 1 · M(h, s), (4.9)

M(h, s)

:=
−(hs2 − 2(1 + h)s+ 3) + 4(1− s)(1− sh)Π(−sh,

√
h)/K(

√
h)√

3h2s4 − 4(h2 + h)s3 + (4h2 + 2h+ 4)s2 − 4(1 + h)s+ 3
,

(4.10)

where h = h(Ṽ , ε2), s = s(Ṽ , ε2) are given in Theorem 4.1. Here, Π(·, ·) is
the complete elliptic integral of the third kind.

We show graphs of A(h, s) and E(h, s) with level curves in Figures 4.1 and
4.2.

Figure 4.1: Graph and level curves of A(h, s)
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Figure 4.2: Graph and level curves of E(h, s)

4.2 Proofs of Theorems 4.1-4.2

We prepare several propositions to prove Theorems 4.1 and 4.2.
We will use results in Kosugi, Morita and Yotsutani[3]. We see from

Proposition 1.1 and its proof in [3] that the following lemma holds.

Lemma 4.1 Let E > 0 and A be constants. Then all the solution of
E2uxx − u3 + u−A = 0 in (0, 1),

ux(0) = ux(1) = 0,

ux(x) > 0 in (0, 1)

are represented by two parameters (h, s) with 0 < h < 1 and 0 < s < 1 as
follows.

u(x;h, s) =
β ·(1−hs)sn2(K(

√
h)x,

√
h)+α·cn2(K(

√
h)x,

√
h)

(1−hs)sn2(K(
√
h)x,

√
h)+cn2(K(

√
h)x,

√
h)

, (4.11)

α := α(h, s), β := β(h, s), (4.12)

where α(h, s) and β(h, s) are defined by (4.2) and (4.3), and (h, s) is a
solution of the following system of transcendental equations

E(h, s) = E, (4.13)

A(h, s) = A, (4.14)

0 < h < 1, 0 < s < 1, (4.15)

where E(h, s) and A(h, s) are defined by (4.8) and (4.7) respectively.
Moreover, ∫ 1

0
u(x)dx = M(h, s), (4.16)
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where M(h, s) is defined (4.10).

Proposition 4.1 Let W (x) be a solution of (AP;Ṽ ), and

u(x) :=

√
3√

λ2 − λ+ 1

(
λ W (x)−

(
1

3
+

λ

3

))
, (4.17)

where

λ :=
1

Ṽ + 1
. (4.18)

Then u(x) satisfies

( √
3ε√

Ṽ 2 + Ṽ + 1

)2

uxx − u3 + u

+
1

3
√
3
· (1− Ṽ )(2Ṽ + 1)(Ṽ + 2)(√

Ṽ 2 + Ṽ + 1
)3 = 0 in (0, 1), (4.19)

ux(0) = ux(1) = 0, (4.20)

ux(x) > 0 in (0, 1), (4.21)

and ∫ 1

0
W (x)dx =

Ṽ + 2

3
+

1√
3
·
√

Ṽ 2 + Ṽ + 1

∫ 1

0
u(x)dx. (4.22)

Proof. Let us put

U(x) :=
W (x)

Ṽ + 1
.

We get 
(ελ)2Uxx + U(1− U)(U − λ) = 0 in (0, 1),

Ux(0) = Ux(1) = 0,

Ux(x) > 0 in (0, 1),

and ∫ 1

0
W (x)dx =

1

λ

∫ 1

0
U(x)dx,

where λ = 1/(Ṽ + 1).
We further introduce u(x) by

u(x) :=

(
U(x)−

(
1
3 + λ

3

))
c

, c :=

√
λ2 − λ+ 1√

3
.
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We have

U(x) = cu(x) +
1

3
+

λ

3
,

and obtain



(
λε

c

)2

uxx − u3 + u+
1

3
√
3

(λ− 2) (2λ− 1) (λ+ 1)(√
λ2 − λ+ 1

)3 = 0 in (0, 1),

ux(0) = ux(1) = 0,

ux(x) > 0 in (0, 1),

and ∫ 1

0
W (x)dx =

1

λ

(
c

∫ 1

0
udx+

1 + λ

3

)
.

Hence, we get

( √
3λε√

λ2 − λ+ 1

)2

uxx − u3 + u

+
1

3
√
3

(λ− 2) (2λ− 1) (λ+ 1)(√
λ2 − λ+ 1

)3 = 0 in (0, 1),

ux(0) = ux(1) = 0,

ux(x) > 0 in (0, 1),

and ∫ 1

0
W (x)dx =

1

λ

(√
λ2 − λ+ 1√

3

∫ 1

0
u(x)dx+

1 + λ

3

)
.

Therefore, we obtain

( √
3ε√

Ṽ 2 + Ṽ + 1

)2

uxx − u3 + u

− 1

3
√
3
· (1− Ṽ )(2Ṽ + 1)(Ṽ + 2)(√

Ṽ 2 + Ṽ + 1
)3 = 0 in (0, 1),

ux(0) = ux(1) = 0,

ux(x) > 0 in (0, 1),

and ∫ 1

0
W (x)dx =

Ṽ + 2

3
+

1√
3
·
√

Ṽ 2 + Ṽ + 1

∫ 1

0
u(x)dx.

2

The following proposition immediately follows from Lemma 4.1 and
Proposition 4.1.
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Proposition 4.2 Let Ṽ > 0. There exists a solution W (x) of (AP;Ṽ ), if
and only if (E) has a solution (h, s). For the solution (h, s) of (E), (AP;Ṽ )
has a solution in the form (4.1) with (4.2) and (4.3).

The following proposition is crucial for the proof of Theorem 4.1. We
will give a proof of it in Subsection 4.3.

Proposition 4.3 Let Ṽ > 0. There exists a solution (h, s) = (h(Ṽ , ε2),
s(Ṽ , ε2)) of (E), if and only if (Ṽ , ε2) ∈ G, where G is defined by (1.8).
Moreover, the solution is unique.

We obtain following proposition by Lemma 4.1 and Proposition 4.1.

Proposition 4.4 Let Ṽ > 0, ε > 0, (h, s) = (h(Ṽ , ε2), s(Ṽ , ε2)) be the
unique solution of (E), W (x; Ṽ , ε2) be the unique solution of (E) in the
form (4.1) with (4.2) and (4.3), and u(x) be defined by (4.17) and (4.18)
with W (x) = W (x; Ṽ , ε2). Then∫ 1

0
u(x)dx = M(h(Ṽ , ε2), s(Ṽ , ε2)), (4.23)

where M(h, s) is defined by (4.10).

Now, we give a proofs of Theorems 4.1 and 4.2.

Proof of Theorem 4.1. We see from Propositions 4.2 and 4.3 that con-
clusions hold except (1.10).

We see that

Ṽ + 1− Ṽ ·W
(
1− x;

1

Ṽ
,
ε2

Ṽ 2

)
is a solution of (AP; Ṽ ). Thus, we obtain (1.10) by the uniqueness of
solutions of (AP ; Ṽ ). 2

Proof of Theorem 4.2. We obtain conclusions by (1.13), Propositions
4.1, and 4.4. 2

4.3 Proof of Proposition 4.3

We have the following lemma by Lemma 3.2 and the proof of Lemma 3.4
in [3].

Lemma 4.2 Let E(h, s) be defined by (4.7). The derivative of E(h, s) with
respect to s satisfies

∂

∂s
E(h, s)


> 0, s ∈ (0, σ(h)), h ∈ [0, 1),
= 0, s = σ(h), h ∈ [0, 1),
< 0, s ∈ (σ(h), 1), h ∈ [0, 1),

(4.24)
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where σ(h) := 1/(1 +
√
1− h). Moreover,

E(h, σ(h)) = 1√
2(2− h)K(

√
h)

, (4.25)

d

dh
E(h, σ(h)) < 0 for h ∈ [0, 1), (4.26)

and

E(0, σ(0)) = 1

π
, E(h, σ(h)) → 0 as h → 1. (4.27)

In addition,

E(0, s) =
2
√

2 s (1− s)

π
√
4 s2 − 4 s+ 3

. (4.28)

We show graphs of ∂E(h, s)/∂s in Figure 4.3.

Figure 4.3: Graph of ∂E(h, s)/∂s

We have following lemmas.

Lemma 4.3 Let

r(v) :=

√
3

9
· (1− v)(2v + 1)(v + 2)(√

v2 + v + 1
)3 . (4.29)

Then r(v) is monotone decreasing in (0,∞) and

r(0) =
2
√
3

9
, r(1) = 0, r(v) → −2

√
3

9
as v → ∞. (4.30)
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Proof. It is obvious from

dr(v)

dv
= −3

√
3

2
· v(v + 1)(√

v2 + v + 1
)5 . (4.31)

2

We show graph of r(v) in Figure 4.4.

Figure 4.4: Graph of r(v)

Lemma 4.4 Let A(h, s) be defined by (4.8). Then

A(h, 0) =
2
√
3

9
, A(h, 1) = −2

√
3

9
for all h ∈ [0, 1), (4.32)

As(h, s) < 0 for all (h, s) ∈ (0, 1)× (0, 1). (4.33)

We show graphs of As(h, s) in Figure 4.5.
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Figure 4.5: Graph of As(h, s)

Proof. It is easy to see (4.32).
We will show (4.33). We have

As = − 32s (1− s) (1− hs) · f(h, s)
(s2 (3 s2 − 4 s+ 4)h2 − 2 s (2 s2 − s+ 2)h+ 4 s2 − 4 s+ 3)5/2

,

(4.34)

where

f(h, s) :=
(
h2 − h+ 1

)
h2s4 − 2 (h+ 1)h2s3 + 6h2s2

− 2 (h+ 1)hs+ h2 − h+ 1. (4.35)

We may show that

f(h, s) > 0 for all (h, s) ∈ (0, 1)× (0, 1). (4.36)

We show graphs of f(h, s) in Figure 4.6.

Figure 4.6: Graph of f(h, s)
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We will show that f(h, s) has no critical point in (0, 1)× (0, 1). We get

fh(h, s) = −4h3s4 + 3h2s4 + 6h2s3 − 2hs4 + 4hs3 − 12hs2

+ 4hs− 2h+ 2 s+ 1,

fs(h, s) = −2h
(
2h3s3 − 2h2s3 − 3h2s2 + 2hs3 − 3hs2 + 6hs− h− 1

)
.

By virtue of the Euclid’s algorithm, we have(
h2 − h+ 1

)2
f0(h, s)

=

(
1

2

(
h2 − h+ 1

) (
4h2 − 3h+ 2

)
s+

1

4

(
7h2 − 7h− 2

))
· f1(h, s)

+
1

4
(1− h) · f2(h, s),

h
(
h2 + 5h− 2

)2
f1(h, s)

=

(
−2

9
h
(
h2 − h+ 1

) (
h2 + 5h− 2

)
s

−16

81
h6 +

4

9
h5 − 43

27
h4 +

298

81
h3 − 1

3
h2 − 22

27
h+

8

81

)
· f2(h, s)

+
8

81
·
(
h2 − h+ 1

)2 · f3(h, s),
(
16h6 − 42h5 + 117h4 − 178h3 + 75h2 + 4

)2 · f2(h, s)
=
(
−9h

(
h2 + 5h− 2

) (
16h6 − 42h5 + 117h4 − 178h3 + 75h2 + 4

)
s

+ 128h10 − 640h9 + 1848h8 − 4731h7 + 4860h6 + 1860h5 − 1152h4

−2697h3 + 1632h2 − 100h− 16
)
· f3(h, s)

− 81h · (h2 + 5h− 2)2 · f4(h),

where

f0(h, s) := fh,

f1(h, s) := 2h3s3 − 2h2s3 − 3h2s2 + 2hs3 − 3hs2 + 6hs− h− 1,

f2(h, s) := −9h
(
h2 + 5h− 2

)
s2 +

(
8h4 − 10h3 + 60h2 + 2h− 4

)
s

− 8h4 + 12h3 − 27h2 + h− 6,

f3(h, s) :=
(
16h6 − 42h5 + 117h4 − 178h3 + 75h2 + 4

)
s

− 16h6 + 28h5 − 133h4 + 233h3 + h2 − 79h+ 6,

f4(h) := 32h9 − 128h8 + 376h7 − 845h6 + 730h5

+ 129h4 − 227h3 − 114h2 + 77h+ 2. (4.37)
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Thus, fh(h, s) = 0 and fs(h, s) = 0 implies

(h2 + 5h− 2)2 · f4(h) = 0, f3(h, s) = 0

note that
f4(h) > 0 for all h ∈ (0, 1) (4.38)

which we will show in Lemma 4.7 in this section.
Thus, we obtain

h2 + 5h− 2 = 0, (−121824h+ 45360)s+ 114264h− 42552 = 0,

which implies from 0 < h < 1

h =
−5 +

√
33

2
, s =

17 +
√
33

12
> 1.

This contradicts to s ∈ (0, 1). Therefore, f(h, s) has no critical point in
(0, 1)× (0, 1).

Let us check values of f(h, s) on the boundary. We have

f(h, 0) = h2 − h+ 1 > 0, f(h, 1) = (h2 − h+ 1)(1− h)2 > 0,

f(0, s) = 1 > 0, f(1, s) = (1− s)4 > 0,

for 0 < h < 1, 0 < s < 1. Thus we complete the proof. 2

Lemma 4.5 Let Ṽ > 0 be fixed. There exists a unique curve

s(h; Ṽ ) ∈ C([0, 1)) ∩ C∞((0, 1)) (4.39)

such that

A(h, s(h; Ṽ )) =
1

3
√
3
· (1− Ṽ )(2Ṽ + 1)(Ṽ + 2)(√

Ṽ 2 + Ṽ + 1
)3 , 0 < s(h; Ṽ ) < 1. (4.40)

Moreover,

s(0; Ṽ ) =
1

2
− 1− Ṽ

√
2
√

(Ṽ + 2)(2Ṽ + 1)
, (4.41)

and

s(h; 1) =
1

1 +
√
1− h

(0 < h < 1). (4.42)

Proof. We obtain the existence and uniqueness of s(h; Ṽ ) by Lemmas 4.3
and 4.4. The assertion (4.39) is obtained by employing standard implicit
function theorems.
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We will show (4.41). By the construction of s(0; Ṽ ), it is the unique
solution of

2(−2s+ 1)

(4s2 − 4s+ 3)3/2
=

1

3
√
3
· (1− Ṽ )(2Ṽ + 1)(Ṽ + 2)

(Ṽ 2 + Ṽ + 1)3/2
.

We can obtain the solution exactly, and get (4.41).
We will show (4.42). By the equation (4.40), We obtainA(h, s(h; 1)) = 0.

We can obtain the solution exactly, and get (4.42). 2
Let us show that E(h, s(h; Ṽ )) is decreasing in h.

Lemma 4.6 Let E(h, s) be defined by (4.7), and s(h; Ṽ ) defined in Lemma
4.5, then for each fixed Ṽ > 0,

E(0, s(0; Ṽ )) =

√
3
√

Ṽ

π
√

Ṽ 2 + Ṽ + 1
, (4.43)

E(h, s(h; Ṽ )) → 0 as h → 1, (4.44)

and
dE(h, s(h; Ṽ ))

dh
< 0 in (0, 1). (4.45)

We show graphs of dE(h, s(h; Ṽ ))/dh in Figure 4.7.

Figure 4.7: Graph of dE(h, s(h; Ṽ ))/dh

Proof. We obtain (4.43) by (4.41) and

E(0, s) = 2

√
2
√

s (1− s)

π
√
4s2 − 4s+ 3

. (4.46)
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We obtain (4.44) by Lemma 4.2.
We will show (4.45). Let us denote s(h; Ṽ ) by s(h) or s, since Ṽ is given

and fixed.
It holds that

dE(h, s(h))
dh

= Eh + Es ·
ds(h)

dh

and

Ah +As ·
ds(h)

dh
= 0.

Hence, we get

dE(h, s(h))
dh

=
AsEh − EsAh

As
. (4.47)

We have (4.34),

Ah = −16s2 (1− s)2 (1− hs)
{
s3h2 +

(
−2s3 + 3s2 − 3s+ 2

)
h− 1

}
/
((
3s4 − 4s3 + 4s2

)
h2 +

(
−4s3 + 2s2 − 4s

)
h+ 4s2 − 4s+ 3

)5/2
,

Es = 3
(
hs2 − 2hs+ 1

) (
hs2 − 2s+ 1

) (
1− hs2

)
/
(√

2s (1− s) (1− hs)K (
√
h)

·
((
3s4 − 4s3 + 4s2

)
h2 +

(
−4s3 + 2s2 − 4s

)
h+ 4s2 − 4s+ 3

)3/2)
,

Eh =
(
s (1− s) (1− hs)

·
((
3s4−4s3+4s2

)
h2+

(
−4s3+2s2−4s

)
h+4s2−4s+3

)
E (

√
h)

− s (1− s) (1− h)

·
((
s4 + 2s3

)
h2 +

(
−8s3 + 8s2 − 6s

)
h+ 4s2 − 4s+ 3

)
K (

√
h)
)

/
(
−h (1− h)

√
2s (1− s) (1− hs)K (

√
h)2

·
((
3s4−4s3+4s2

)
h2 +

(
−4s3 + 2s2 − 4s

)
h+ 4s2−4s+ 3

)3/2)
.

Thus, we have

AsEh − EsAh =(
8
√
2 (1− hs)2 s2 (1− s)2

)(
2f(h, s)E (

√
h)− P (h, s)K (

√
h)
)

/
(
(1− h)h

((
3s4 − 4s3 + 4s2

)
h2 +

(
−4s3 + 2s2 − 4s

)
h+ 4s2 − 4s+ 3

)3
·K (

√
h)2
√
s (1− s) (1− hs)

)
, (4.48)
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where f(h, s) is defined by (4.35),

P (h, s) := s4h4 +
(
−3s4 + 4s3 − 6s2

)
h3

+
(
2s4 − 4s3 + 6s2 + 4s+ 1

)
h2 + (−4s− 3)h+ 2. (4.49)

We show graphs of P (h, s) in Figure 4.8.

Figure 4.8: Graph of P (h, s)

We note that (4.36) holds, and

E(
√
h)−K(

√
h)
√
1− h > 0 for h ∈ (0, 1),

which is easy to prove by differentiation.
Thus we may show

2f(h, s)
√
1− h− P (h, s) > 0 in (0, 1)× (0, 1). (4.50)

Now let us put H :=
√
1− h, that is, h := 1−H2. We get

f(1−H2, s) = −s4H8 +
(
3s4 − 2s3

)
H6 +

(
−4s4 + 8s3 − 6s2 + 2s− 1

)
H4

+
(
3s4 − 10s3 + 12s2 − 6s+ 1

)
H2 − s4 + 4s3 − 6s2 + 4s− 1,

P (1−H2, s) = s4H8 +
(
−s4 − 4s3 + 6s2

)
H6

+
(
−s4 + 8s3 − 12s2 + 4s+ 1

)
H4

+
(
s4 − 4s3 + 6s2 − 4s+ 1

)
H2.

Therefore, we obtain

2f(1−H2, s)H − P (1−H2, s) = H (1−H)2 F (H, s),
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where

F (H, s) :=
(
2H2 + 3H + 2

)
(1−H)2 (H + 1)2 s4

− 4 (H + 2) (1−H) (H + 1)2 s3

+ 6 (2−H) (H + 1)2 s2 − 4 (H + 2) (H + 1) s+ 2H2 + 3H + 2
(4.51)

We show that
F (H, s) > 0 in (0, 1)× (0, 1). (4.52)

in Lemma 4.8. Thus we complete the proof.2
We show proofs of Lemma 4.7 and 4.8 which we used in the proofs of

Lemma 4.4 and 4.5, respectively.

Lemma 4.7 Let f4(h) be defined by (4.37) then (4.38) holds.

We show graphs of f4(h) in Figures 4.9.

Figure 4.9: Graph of f4(h)
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Proof. We obtain a Sturm’s sequence for f4 as

sts(h) :=[
h9 − 4h8 +

47

4
h7 − 845

32
h6 +

365

16
h5 +

129

32
h4 − 227

32
h3 − 57

16
h2 +

77

32
h+

1

16
,

h8 − 32

9
h7 +

329

36
h6 − 845

48
h5 +

1825

144
h4 +

43

24
h3 − 227

96
h2 − 19

24
h+

77

288
,

− h7 +
12287

2672
h6 − 375

167
h5 − 20405

2672
h4 +

5097

1336
h3 +

4953

1336
h2 − 579

334
h− 235

1336
,

− h6 +
3125840

1324671
h5 − 6762557

9272697
h4 − 7518526

9272697
h3

+
183914

9272697
h2 +

2201704

9272697
h− 66574

9272697
,

− h5 +
622141845373

277036662631
h4 − 145639869262

277036662631
h3

− 516971097161

554073325262
h2 +

87880085542

277036662631
h+

28239941389

554073325262
,

− h4 − 50516367775371319

42533564212819048
h3 +

19264738753473027

2501974365459944
h2

− 180588941858621041

42533564212819048
h+

1110296803852637

42533564212819048
,

h3 − 9250859961208875229383

3825853394779691509547
h2

+
4442508415273413102621

3825853394779691509547
h− 43719050269842056449

3825853394779691509547
,

− h2 +
5383132182649020955853122

10900550974297099064419837
h+

1154671177197221778475355

10900550974297099064419837
,

h+
34818171233773273986153872

51259358657813376877199485
, 1

]
Let us see Strum’s sequence sts(h) at h = 0 and h = 1. We have

sts(0) =

[
1

16
,

77

288
, − 235

1336
, − 66574

9272697
,

28239941389

554073325262
,

1110296803852637

42533564212819048
, − 43719050269842056449

3825853394779691509547
,

1154671177197221778475355

10900550974297099064419837
,
34818171233773273986153872

51259358657813376877199485
, 1

]
and

sts(1) =

[
1,

5

9
, −112

167
,

646144

9272697
,

42979821136

277036662631
,
6871497720760336

5316695526602381
,

− 1026217201425612673664

3825853394779691509547
, − 4362747614450856330091360

10900550974297099064419837
,

− 16441187424040102891045613

51259358657813376877199485
, 1

]
,
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which implies tsc(0)−tsc(1) = 4−4 = 0. Thus, f4(h) = 0 has no real root in
h ∈ (0, 1) by Strum’s theorem, and (4.38) holds in view of f4(0) = 2 > 0.2

Lemma 4.8 Let F (H, s) be defined by (4.51) then (4.52) holds.

We show graphs of F (H, s) in Figures 4.10.

Figure 4.10: Graph of F (H, s)

Proof. It hold that

F0 =
1

4
·
(1−H)

(
2H2 + 3H + 2

)
s+H + 2

(1−H) (2H2 + 3H + 2)
· F1 − F2,

F1 =
2

3
·

(
(1−H)2

(
2H2 + 3H + 2

)2
s

H3

+

(
2H2 + 3H + 2

)
(1−H) (H + 2)

(
2H2 − 1

)
(H + 1)H3

)
· F2 − F3,

F2 =
9

2
·

H2 (H + 1)
((
H2 − 1

)
s+ 2H + 1

)
(1−H) (2H2 + 3H + 2)2 (2H + 1) (H + 2)

· F3 − F4,

37



where

F0 := F,

F1 := Fs = 4 (H+1)
((

2H2+3H+2
)
(H+1) (1−H)2 s3

−3 (H+2) (H+1) (1−H) s2+3 (H+1) (2−H) s−(H+2)
)
,

F2 :=
2
(
3 (1−H) (H + 1)2 s2 − 3 (H + 1) (H + 2) s+ 2H2 + 4H + 3

)
H3

(1−H) (2H2 + 3H + 2)
,

F3 := −4

3
·
(2H + 1) (H + 2)

(
2H2 + 3H + 2

)
H ((H + 1)s− 1)

H + 1
,

F4 :=
4H4

2H2 + 3H + 2
.

Thus, we obtain a Strum’s sequence for F in s as

STS(s;H) := [F0, F1, F2, F3, F4].

We note that,

F0(H, 0) = 2H2 + 3H + 2 > 0,

Let us see Strum’s sequence STS(s;H) at s = 0 and s = 1. We have

STS(0; H) :=[
2H2 + 3H + 2, −4(H + 1)(H + 2),

2H3
(
2H2 + 4H + 3

)
(1−H) (2H2 + 3H + 2)

,

4

3
·
H (2H + 1) (H + 2)

(
2H2 + 3H + 2

)
H + 1

,
4H4

2H2 + 3H + 2

]

and

STS(1; H) :=[
H4
(
2H2+3H+2

)
, 4H4(H + 1)(2H + 1),−

2H4
(
3H2 + 4H + 2

)
(1−H) (2H2 + 3H + 2)

,

−4

3
·
H2 (2H + 1) (H + 2)

(
2H2 + 3H + 2

)
H + 1

,
4H4

2H2 + 3H + 2

]

Now, let us count times of sign changing TSC(s). For 0 < H < 1, we
have
and TSC(0) − TSC(1) = 2 − 2 = 0, which implies that F (H, s) = 0 in
s ∈ (0, 1) has no real root by Strum’s theorem, and (4.52) holds.

Therefore, F (H, s) has no critical point in (0, 1)× (0, 1). We may check
values of the boundary. We have

38



s F0 F1 F2 F3 F4 TSC(s)

0 + - + + + 2

1 + + - - + 2

F (H, 0) = 2H2 + 3H + 2 > 0, F (H, 1) = H4(2H2 + 3H + 2) > 0,

F (0, s) = 2(s− 1)4 > 0, F (1, s) = 24s2 − 24s+ 7 > 0,

for 0 < H < 1, 0 < s < 1. Thus we complete the proof. 2
Proof of Proposition 4.3. First, we note that

0 <

√
3ε√

Ṽ 2 + Ṽ + 1
< E(0, s(0; Ṽ ))

is equivalent to

0 <

√
3ε√

Ṽ 2 + Ṽ + 1
<

√
3
√

Ṽ

π
√

Ṽ 2 + Ṽ + 1
,

that is,

0 < ε <

√
Ṽ

π
.

Thus we complete the proof by Lemma 4.6.2
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5 Limit of m(Ṽ , ε2)

In this section, we give a proof of Proposition 3.1, which show limits of
m(Ṽ , ε2) as ε2 → 0 and ε2 → Ṽ /π2.

5.1 Limit of m(Ṽ , ε2) as ε2 → Ṽ /π2

We will show (i). Let Ṽ ∈ (0, 1) be fixed. We note that (Ṽ , ε2) →
(Ṽ , Ṽ /π2) corresponds to

(h, s(h; Ṽ )) → (0, s(0; Ṽ )) =

0,
1

2
− 1− Ṽ

√
2
√

(Ṽ + 2)(2Ṽ + 1)

 (5.1)

by Lemma 4.6 and (4.41). Hence we get m(Ṽ , ε2) →m(Ṽ , Ṽ /π2) as ε2 →
Ṽ /π2 and

m

(
Ṽ ,

Ṽ

π2

)
=

4Ṽ + 2

3
+

1√
3
·
√
Ṽ 2 + Ṽ + 1 · M(0, s(0; Ṽ ))

=
4Ṽ + 2

3
+

1√
3
·
√
Ṽ 2 + Ṽ + 1 · 1− 2s(0; Ṽ )√

4s(0; Ṽ )2 − 4s(0; Ṽ ) + 3

=
4Ṽ + 2

3
+

1√
3
·
√
Ṽ 2 + Ṽ + 1 · 1√

3
· 1− Ṽ√

Ṽ 2 + Ṽ + 1

= Ṽ + 1 (5.2)

by (4.10) and (4.41). Thus we obtain (3.1) in view of (1.13) and (1.14).

5.2 Limit of m(Ṽ , ε2) as ε2 → 0

We will show (ii). Let Ṽ ∈ (0, 1) be fixed. We see that (Ṽ , ε) → (Ṽ , 0)
corresponds to

(h, s(h; Ṽ )) → (1, s(1; Ṽ )) (5.3)

by Lemma 4.6 and (4.40), where s(1; Ṽ ) is the unique solution of

A(1, s) = r(Ṽ ), (5.4)

and 0 < s(1; Ṽ ) < 1, where

A(1, s) =
2 (1− s)2 (s+ 1)

(3 s2 − 2 s+ 3)3/2
(5.5)

40



and r(v) is defined by (4.29). In fact, it holds that

A(1, 0) =
2
√
3

9
, A(1, 1) = 0, 0 < r(Ṽ ) <

2
√
3

9
(5.6)

and A(1, s) is monotone decreasing in s ∈ (0, 1).
By solving (5.4), we obtain

9Ṽ (Ṽ + 1)s2 − 2(7Ṽ 2 + 7Ṽ + 4)s+ 9Ṽ (Ṽ + 1) = 0, (5.7)

and

s(1; Ṽ ) =
7 Ṽ 2 + 7 Ṽ + 4− 2(2 Ṽ + 1)

√
(2 Ṽ + 4)(1− Ṽ )

9Ṽ (Ṽ + 1)
, (5.8)

since

A(1, s)2 − r(Ṽ )2

=
9Ṽ s2 + (8Ṽ 2 + 2Ṽ + 8)s+ 9Ṽ

27(3s2 − 2s+ 3)3(Ṽ 2 + Ṽ + 1)3

· ((9Ṽ + 9)s2 − (8Ṽ 2 + 14Ṽ + 14)s+ 9Ṽ + 9)

· (9(Ṽ + 1)Ṽ s2 − 2(7Ṽ 2 + 7Ṽ + 4)s+ 9Ṽ (Ṽ + 1))

=
9Ṽ s2 + (8Ṽ 2 + 2Ṽ + 8)s+ 9Ṽ

27(3s2 − 2s+ 3)3(Ṽ 2 + Ṽ + 1)3

·

(9 Ṽ + 9)

(
s− 1

9

4 Ṽ 2 + 7 Ṽ + 7

Ṽ + 1

)2

+
(16 Ṽ + 8)(1− Ṽ )(Ṽ + 2)2

9 Ṽ + 9


· (9(Ṽ + 1)Ṽ s2 − 2(7Ṽ 2 + 7Ṽ + 4)s+ 9Ṽ (Ṽ + 1)). (5.9)

We have

lim
h→1

M(h, s(h, Ṽ )) =
s(1; Ṽ ) + 1√

3s(1; Ṽ )2 − 2s(1; Ṽ ) + 3

= A(1, s(1; Ṽ )) · 3s(1; Ṽ )2 − 2s(1; Ṽ ) + 3

2(1− s(1; Ṽ ))2

=
1

6
√
3
· (1− Ṽ )(2 Ṽ + 1)(Ṽ + 2)(3s(1; Ṽ )2 − 2s(1; Ṽ ) + 3)

(Ṽ 2 + Ṽ + 1)3/2(1− s(1; Ṽ ))2
(5.10)

by 0 < s(1; Ṽ ) < 1 and

lim
h→1

(1− hs(h; Ṽ ))Π(−hs(h; Ṽ ),
√
h)

K(
√
h)

= 1. (5.11)
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Hence

lim
ε→0

m(Ṽ , ε2) =
4Ṽ + 2

3
+

1√
3
·
√

Ṽ 2 + Ṽ + 1 · lim
h→1

M(h, s(h, Ṽ ))

=
4Ṽ + 2

3
+

1√
3
·
√

Ṽ 2 + Ṽ + 1

·

(
1

6
√
3
· (1− Ṽ )(2 Ṽ + 1)(Ṽ + 2)(3s2 − 2s+ 3)

(Ṽ 2 + Ṽ + 1)3/2(1− s)2

)
− (2Ṽ + 1) + (2Ṽ + 1)

= − 1

18

(2 Ṽ +1)
(
9Ṽ (Ṽ +1)s2−2(7Ṽ 2+7Ṽ +4)s+ 9Ṽ (Ṽ +1)

)
(Ṽ 2+Ṽ +1) (1−s)2

+(2Ṽ +1)

= 2Ṽ + 1 (5.12)

by (5.10) and (5.7), where s = s(1; Ṽ ). Thus, we get (3.2).
We obtain (iii) by (ii) and (1.13).2
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6 Monotonicity of m(Ṽ , ε2)

In this section, we give a proof of Theorem 3.1, which we show mono-
tonicity of m(Ṽ , ε2) in ε. We prepare several propositions to prove Theorem
3.1. We will give proofs of them in subsequent sections.

6.1 Proof of Theorem 3.1

The following properties shows the expression of ∂m(Ṽ , ε2)/∂ε. Let
M(h, s), E(h, s) andA(h, s) be defined by (4.10), (4.7) and (4.8) respectively,
s(h; Ṽ ) is defined in Lemma 4.5.

Proposition 6.1 Let Ṽ > 0 be fixed. Then, m(Ṽ , ε2) satisfies the following
equation

∂m(Ṽ , ε2)

∂ε
= −Ms · Ah −Mh · As

As ·
dE(h, s(h; Ṽ ))

dh

, (6.1)

where

As(h, s)

= −32
(
DK2

)−5/2
s (1− s) (1− hs)

·
((
h2 − h+ 1

)
h2s4 − 2 (h+ 1)h2s3 + 6h2s2 − 2 (h+ 1)hs+ h2 − h+ 1

)
,

(6.2)

Ah(h, s)

= −16
(
DK2

)−5/2
s2 (1−s)2 (1−hs)

(
s3h2+

(
−2s3+3s2−3s+2

)
h−1

)
,

(6.3)

Ms(h, s)

= −2s−1
(
DK2

)−3/2
K(

√
h)−1

·
(
−3

(
1−hs2

) (
hs2−2hs+1

) (
hs2−2s+ 1

)
Π(−hs,

√
h)+s · DK2 · E(

√
h)

+
(
hs2 − 2 s+ 1

) (
2h2s3 − hs3 − hs2 − 4hs+ 2 s2 − s+ 3

)
K(

√
h)
)
, (6.4)

Mh(h, s)

= 2h−1(1− h)−1
(
DK2

)−3/2
K(

√
h)−2 (1− s)

((
− (1− hs) · DK2 · E(

√
h)

+ (1− h)
(
h2s4 + 2h2s3 − 8hs3 + 8hs2 − 6hs+ 4s2 − 4s+ 3

)
K(

√
h)
)

·Π(−hs,
√
h) +DK2 · E(

√
h)K(

√
h)

− (1− h)
(
h2s4 − 4hs3 + 4hs2 − 4hs+ 4 s2 − 4 s+ 3

)
K(

√
h)2
)
, (6.5)
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DK2(h, s) :=
(
3s4 − 4s3 + 4s2

)
h2 +

(
−4s3 + 2s2 − 4s

)
h+ 4 s2 − 4 s+ 3.

(6.6)

Moreover, it holds that

DK2(h, s) > 0 (0 < h < 1, 0 < s < 1) , (6.7)

As ·
dE(h, s(h; Ṽ ))

dh
> 0. (6.8)

Proof. Let Ṽ > 0 be fixed. Then s = s(h; Ṽ ) by lemma 4.5. By the
equation of (1.12), we get

∂m(Ṽ , ε2)

∂ε
= −

dM(h, s(h; Ṽ ))

dh√
3

Ṽ 2+Ṽ+1

∂ε

∂h

.

Now, it hold that

dE(h, s(h; Ṽ ))

dh
=

√
3

Ṽ 2 + Ṽ + 1
· ∂ε
∂h

,

dM(h, s(h; Ṽ ))

dh
= Mh +Ms ·

ds(h; Ṽ )

dh

and

Ah +As ·
ds(h; Ṽ )

dh
= 0.

Therefore,
∂m(Ṽ , ε2)

∂ε
= −Ms · Ah −Mh · As

As ·
dE(h, s(h; Ṽ ))

dh

. (6.9)

Thus, we get (6.1).
We have (6.7) by

DK2(h, s)=
(
3s4−4s3+4s2

)(
h− 2s2 − s+ 2

s (3s2−4s+4)

)2

+
8
(
s2 − s+ 1

)
(s− 1)2

3s2 − 4s+ 4
> 0.

We have (6.8) by Lemmas 4.4 and 4.6. Thus, we complete the proof. 2

Proposition 6.2 Let Ṽ > 0 be fixed. Then, the following equation holds:

Ms · Ah −Mh · As =
32s(1− s)2(1− hs)2

h (1− h) (DK2)3 ·K(
√
h)2

·
√
s · NΠ√

(1− s)(1− sh)
· J ,

(6.10)
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where

NΠ(h, s) :=
(
2s4h4 −

(
2s4 + 4s3

)
h3

+
(
2s4 − 4s3 + 12s2 − 4s+ 2

)
h2 − (4s+ 2)h+ 2

)
E(

√
h)

−
(
s4h4 +

(
−3s4 + 4s3 − 6s2

)
h3

+
(
2s4 − 4s3 + 6s2 + 4s+ 1

)
h2 + (−4s− 3)h+ 2

)
K(

√
h),

(6.11)

J (h, s) := −
√

(1− s)(1− sh)√
s

·Π(−hs,
√
h)

+

√
(1− s)(1− sh)√

s
· N

KEK(
√
h)E(

√
h) +NK2K(

√
h)2

NΠ
,

(6.12)

NKE(h, s) := −h3s3 − h2s3 + 6h2s2 − 3h2s+ 2h2 − 3hs− 2h+ 2, (6.13)

NK2(h, s) := (1− h)
(
h2s3 − 3h2s2 + 3hs+ h− 2

)
. (6.14)

Moreover, it holds that

NΠ(h, s) > 0 (0 < h < 1, 0 < s < 1) . (6.15)

Figure 6.1 shows graphs of NΠ(h, s) (0 < h < 1, 0 < s < 1).

Figure 6.1: Graphs of NΠ(h, s)
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Proof. We have (6.2) - (6.5). Multiplying Ms by Ah. we get

Ms · Ah

= 32 s (1− s)2 (1− hs)
(
h2s3 − 2hs3 + 3hs2 − 3hs+ 2h− 1

)
·
(
3
(
hs2 − 1

) (
hs2 − 2hs+ 1

) (
hs2 − 2 s+ 1

)
Π(−hs,

√
h)

+ sDK2E(
√
h)

+
(
hs2 − 2 s+ 1

) (
2h2s3 − hs3 − hs2 − 4hs+ 2 s2 − s+ 3

)
K(

√
h)
)

·
(
DK2

)−4
K(

√
h)−1.

Multiplying Mh by As. we get

Mh · As

= −4 (1− s)
(
hs2 − 2hs+ 1

) (
hs2 − 2 s+ 1

) (
1− hs2

)
·
((

(1− hs)DK2E(
√
h)

− (1− h)
(
h2s4 + 2h2s3 − 8hs3 + 8hs2 − 6hs+ 4s2 − 4s+ 3

)
K(

√
h)
)

·Π(−hs,
√
h)−DK2E(

√
h)K(

√
h)

+ (1− h)
(
h2s4 − 4hs3 + 4hs2 − 4hs+ 4 s2 − 4 s+ 3

)
K(

√
h)2
)

· (h(1− h))−1 (DK2
)−3

K(
√
h)−2.

Hence we obtain

Ms · Ah −Mh · As

=
32s(1− s)2(1− hs)2

h (1− h) (DK2)3 ·K(
√
h)2

·
(
−NΠ ·Π(−hs,

√
h) +NKE ·K(

√
h)E(

√
h) +NK2K(

√
h)2
)

(6.16)

by direct calculation. Thus (6.10) is obvious from (6.16).
We show (6.15). We see from the proof of Lemma 4.6 that

2f(h, s)E(
√
h)− P (h, s)K(

√
h) > 0 (0 < h < 1)

and

NΠ(h, s) = 2f(h, s)E(
√
h)− P (h, s)K(

√
h)

= K(
√
h)

(
2f(h, s)

E(
√
h)

K(
√
h)

− P (h, s)

)
> K(

√
h)(2f(h, s)

√
1− h− P (h, s))

> 0 (0 < h < 1, 0 < s < 1),
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where f(h, s) and P (h, s) be defined by (4.35) and (4.49). Thus we complete
the proof. 2

We note that (Ṽ , ε2) with 0 < Ṽ < 1 and 0 < ε2 < Ṽ /π2 corresponds to
(h, s) with 0 < h < 1 and 0 < s < 1/(1 +

√
1− h) by (4.42).

Now we investigate J (h, s). Figure 6.2 shows graphs of J (h, s) for (0 <
h < 1, 0 < s < 1/(1 +

√
1− h))

Figure 6.2: Graphs of J (h, u)

The following propositions are crucial for the proof of Theorem 3.1. We
will give a proof of it in Subsection 6.2 and 6.3.

Proposition 6.3 Let J (h, s) be defined by (6.12) For each fixed h ∈ (0, 1),
it holds that

lim
s↓0

J (h, s) = 0, (6.17)

J
(
h,

1

1 +
√
1− h

)
= 0 (6.18)

for each fixed h ∈ (0, 1).

Proposition 6.4 Let J (h, s) be defined by (6.12). Then J (h, s) satisfies
the following equation

∂

∂s
J (h, s) =

F (h, s)K(
√
h)3√

s(1− s)(1− sh) · (NΠ)2
, (6.19)
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where

F (h, s) := h4CF0(h,U(h))s8 − 2h4CF1(h,U(h))s7 + 2h4CF2(h,U(h))s6

− 2h3CF3(h,U(h))s5+2h2CF4(h,U(h))s4−2h2CF3(h,U(h))s3

+ 2h2CF2(h,U(h))s2 − 2hCF1(h, U(h))s+ CF0(h,U(h)),
(6.20)

CF0(h, u) := 2
(
h2 − h+ 1

)2
u3 − 3 (2− h) (1− h)

(
h2 − h+ 1

)
u2

+ 3
(
h2 − 2h+ 2

)
(1− h)2 u− (2− h) (1− h)3 , (6.21)

CF1(h, u) := 4 (h+ 1)
(
h2 − h+ 1

)
u3 − 3 (1− h)

(
3h2 − 3h+ 4

)
u2

+ 6
(
h2 − 2h+ 2

)
(1− h)2 u− (4− 3h) (1− h)3 , (6.22)

CF2(h, u) := 4
(
4h2 − h+ 4

)
u3 − (1− h)

(
23h2 − 6h+ 25

)
u2

+ 2
(
3h2 − 4h+ 4

)
(1− h)2 u+ (3h+ 1) (1− h)3 , (6.23)

CF3(h, u) := 4 (h+1)
(
h2 + 5h+ 1

)
u− (1− h)

(
16h3 + 31h2 + 41h− 4

)
u2

+ 2
(
h2 + 6h− 10

)
(1− h)2 u+ (5h+ 12) (1− h)3 , (6.24)

CF4(h, u) := 2
(
h4 + 2h3 + 29h2 + 2h+ 1

)
u3

− (1− h)
(
8h4 + 17h3 + 87h2 − 5h− 2

)
u2

−
(
8h3−33h2+30h+10

)
(1−h)2 u−

(
2h2−21h−6

)
(1−h)3 ,

(6.25)

U(h) :=
E(

√
h)

K(
√
h)

. (6.26)

Let us consider properties of F (h, s). Figure 6.3 shows a graphs of F (h, s)
for (0 < h < 1, 0 < s < 1/(1 +

√
1− h))

Figure 6.3: Graphs of F (h, s)
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Proposition 6.5 Let h ∈ (0, 1) be fixed. Then,

F (h, 0) = CF0

(
h,

E(
√
h)

K(
√
h)

)
> 0, (6.27)

F

(
h,

1

1 +
√
1− h

)
= − 8(1− h)4(

1 + (1− h)1/2
)4 · g1

(
√
1− h,

E(
√
h)

K(
√
h)

)
< 0,

(6.28)

where F (h, s) is defined by (6.20),

g1(H,u) :=
(
(1+H2)u−2H2

) (
−(1+H2)u2+2(1+H4)u−(1+H2)H2

)
.

(6.29)

The following propositions are crucial for the proof of Theorem 3.1. We
will give a proof of it in Section 7

Proposition 6.6 Let h ∈ (0, 1) be fixed. Then, the following equation

F (h, s) = 0

(
0 < s <

1

1 +
√
1− h

)
(6.30)

in s has the unique solution, where F (h, s) is defined by (6.20).

Proof of Theorem 3.1. We have

J (h, s) > 0

(
0 < h < 1, 0 < s <

1

1 +
√
1− h

)
(6.31)

by Propositions 6.3-6.6. Hence, we obtain (3.4) by Propositions 6.1 and 6.2.
We get (3.5) by (1.14). We obtain (3.6) by (3.4) and (1.13).

6.2 Proofs of Propositions 6.3-6.4

We prepare two lemmas to prove Proposition 6.3.

Lemma 6.1 Let h ∈ (0, 1) be fixed. J (h, s) defined by (6.12) satisfies
(6.17).

Proof. Let h ∈ (0, 1) be fixed. We have

J (h, s) ·
√
s

= −
√

(1− s)(1− sh) ·Π(−hs,
√
h)

+
√
(1− s)(1− sh) ·K(

√
h) · N

KE(h, s)E(
√
h) +NK2(h, s)K(

√
h)

NΠ(h, s)
= (∗).
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We note that

NΠ(h, 0) = 2
(
h2 − h+ 1

)
E(

√
h)− (1− h) (2− h)K(

√
h)

≥
(
2
(
h2 − h+ 1

)√
1− h− (1− h) (2− h)

)
K(

√
h)

=
√
1−h

(
4−2h+3

√
1−h

)(√
1−h−1

)2
K(

√
h) > 0 (0 < h < 1).

Hence we get

(∗)|s=0

= −Π(0,
√
h) +K(

√
h) · N

KE(h, 0)E(
√
h) +NK2(h, 0)K(

√
h)

NΠ(h, 0)

= −K(
√
h) +K(

√
h) ·

2
(
h2 − h+ 1

)
E(

√
h)− (1− h) (2− h)K(

√
h)

2 (h2 − h+ 1)E(
√
h)− (1− h) (2− h)K(

√
h)

= 0.

Thus we obtain

(∗) = cJ1 (h) · s+ cJ2 (h) · s
2 + · · · ,

near s = 0, where cJi (h), (i = 1, 2, · · · ) are some constants. Therefore we
have

J (h, s) = cJ1 (h) ·
√
s+ cJ2 (h) · s

√
s+ · · · ,

which implies (6.17).

Lemma 6.2 Let h ∈ (0, 1) be fixed. J (h, s) defined by (6.12) satisfies
(6.18).

Proof. We have

J (h, s) = −Q(h, s) · ∂m(Ṽ , ε2)

∂ε
,

where

Q(h, s) := As ·
dE(h, s(h; Ṽ ))

dh
·
h (1−h)

(
DK2

)3 ·K(
√
h)2

32s(1− s)2(1− hs)2
·
√
(1−s)(1−sh)√

s · NΠ

by (6.10) and (6.1). Thus

J
(
h,

1

1 +
√
1− h

)
= −Q

(
h,

1

1 +
√
1− h

)
· ∂m(1, ε2)

∂ε
= 0

by (1.14).
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Proof of Proposition 6.3. It is obvious from Lemmas 6.1 and 6.2. 2
Proof of Proposition 6.4. We have

∂

∂s

(
−
√

(1− s)(1− sh)√
s

Π(−hs,
√
h)

)
=

sE(
√
h) + (1− s)K(

√
h)

2s
√

s(1− s)(1− sh)
, (6.32)

∂

∂s

(√
(1− s)(1− sh)√

s

)
=

hs2 − 1

2s
√

s(1− s)(1− sh)
, (6.33)

∂

∂s
NΠ = 4h

((
2h3s3−2h2s3−3h2s2+2hs3−3hs2+6hs−h−1

)
E(

√
h)

+ (1− h)
(
h2s3 − 2hs3 + 3hs2 − 3hs+ 1

)
K(

√
h)
)
, (6.34)

∂

∂s

(
NKEK(

√
h)E(

√
h) +NK2K(

√
h)2
)

= −3hK(
√
h)
((

h2s2 + s2h− 4sh+ h+ 1
)
E(

√
h)

− (1− h)
(
s2h− 2sh+ 1

)
K(

√
h)
)
. (6.35)

Hence, we obtain (6.19) by direct calculation. Thus, we complete proof. 2

6.3 Proof of Proposition 6.5

We begin with the following lemmas.

Lemma 6.3 Let F (h, u) and CF0(h, u) be defined by (6.20) and (6.21) re-
spectively, then (6.27) holds.

Proof. We have

F (h, 0) = CF0

(
h,

E(
√
h)

K(
√
h)

)
,

CF0(h,H) = H3
(
H2 +H + 1

) (
2H2 + 3H + 2

)
(1−H)4 > 0,

CF0
u (h, u)

= 6
(
h2−h+1

)2
u2−6 (2−h) (1−h)

(
h2−h+1

)
u+3

(
h2−2h+2

)
(1−h)2

= 6
(
h2 − h+ 1

)2(
u− 1

2
· (2− h) (1− h)

h2 − h+ 1

)2

+
3

2
(1− h)2 h2 > 0

for 0 < h < 1, H < u < 1, where H =
√
1− h. Thus, we complete the proof

by using
√
1− h < E(

√
h)/K(

√
h) < 1 due to Lemma 2.1. 2

Lemma 6.4 Let F (h, u) and g1(H,u) be defined by (6.20) and (6.29) re-
spectively, then (6.28) holds.
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Proof. We have

F

(
h,

1

1 +
√
1− h

)
= F

(
h,

1

1 +H

)
= − 8H8

(1 +H)4
· g1

(
H,

E(
√
h)

K(
√
h)

)
,

(6.36)

where H =
√
1− h. Hence we may show that

g1 (H,u) > 0 (0 < H < 1, H < u < 1) (6.37)

by Lemma 2.1.
It is easy to see that(

(1 +H2)u− 2H2
)
≥ H(1−H2) > 0 (0 < H < 1, H < u < 1)

and

− (1 +H2)u2 + 2(1 +H4)u− (1 +H2)H2

≥ min
{
2H(1−H)2(H2+H+1), (1−H2)2

}
> 0 (0 < H < 1, H < u < 1).

Thus we have (6.37). Therefore we complete the proof. 2

Thus we obtain Proposition 6.5 by Lemmas 6.3 and 6.4.
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7 Proof of Proposition 6.6

We prepare several lemmas to prove Proposition 6.6.

7.1 Key lemmas and proof of Proposition 6.6

Lemma 7.1 Let F (h, u) be defined by (6.20). It holds that

∂F

∂s
(h, s) = 8h4CF0s7 − 14h4CF1s6 + 12h4CF2s5 − 10h3CF3s4

+ 8h2CF4s3 − 6h2CF3s2 + 4h2CF2s− 2hCF1, (7.1)

∂2F

∂s2
(h, s) = 56h4CF0s6 − 84h4CF1s5 + 60h4CF2s4 − 40h3CF3s3

+ 24h2CF4s2 − 12h2CF3s+ 4h2CF2, (7.2)

∂3F

∂s3
(h, s) = 336h4CF0s5 − 420h4CF1s4 + 240h4CF2s3 − 120h3CF3s2

+ 48h2CF4s− 12h2CF3, (7.3)

∂4F

∂s4
(h, s) = 1680h4CF0s4 − 1680h4CF1s3 + 720h4CF2s2 − 240h3CF3s

+ 48h2CF4, (7.4)

∂5F

∂s5
(h, s) = 6720h4CF0s3 − 5040h4CF1s2 + 1440h4CF2s− 240h3CF3,

(7.5)

∂6F

∂s6
(h, s) = 20160h4CF0s2 − 10080h4CF1s+ 1440h4CF2, (7.6)

∂7F

∂s7
(h, s) = 40320h4CF0s− 10080h4CF1, (7.7)

∂8F

∂s8
(h, s) = 40320h4CF0 > 0 (0 < h < 1) , (7.8)

where

CF0 = CF0 (h, U(h)) , CF1 = CF1 (h, U(h)) , CF2 = CF2 (h, U(h)) ,

CF3 = CF3 (h, U(h)) , CF4 = CF4 (h, U(h)) , U(h) = E(
√
h)/E(

√
h)

are defined by (6.21)-(6.26).

Proof. We obtain identities in (7.1)-(7.8) by direct calculations and the
inequality in (7.8) by Lemma 6.3. 2
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Lemma 7.2 Let F (h, u) be defined by (6.20). It holds that

∂F

∂s

(
h,

1

1 +
√
1− h

)
=

∂F

∂s

(
1−H2,

1

1 +H

)
=

32H7 (1−H)

(1 +H)3
· g1

(
H,

E(
√
1−H2)

K(
√
1−H2)

)
> 0 (0 < h < 1), (7.9)

∂2F

∂s2

(
h,

1

1 +
√
1− h

)
=

∂2F

∂s2

(
1−H2,

1

1 +H

)
= −16H6(1−H)2

(1 +H)2
· g2

(
H,

E(
√
1−H2)

K(
√
1−H2)

)
< 0

(
1− 312

1002
≤ h < 1

)
,

(7.10)

∂3F

∂s3

(
h,

1

1 +
√
1− h

)
=

∂3F

∂s3

(
1−H2,

1

1 +H

)

=
48H5 (1−H)3

1 +H
· g3

(
H,

E(
√
1−H2)

K(
√
1−H2)

)
< 0 (0 < h < h0),

= 0 (h = h0),

> 0 (h0 < h < 1),

(7.11)

∂4F

∂s4

(
h,

1

1 +
√
1− h

)
=

∂4F

∂s4

(
1−H2,

1

1 +H

)
= 48H2 (1−H)2 · g4

(
H,

E(
√
1−H2)

K(
√
1−H2)

)
> 0

(
0 < h < 1− 1

102

)
,

(7.12)

∂5F

∂s5

(
h,

1

1 +
√
1− h

)
=

∂5F

∂s5

(
1−H2,

1

1 +H

)
= −480H3(1 +H) (1−H)3 · g5

(
H,

E(
√
1−H2)

K(
√
1−H2)

)
< 0 (0 < h < 1),

(7.13)

∂6F

∂s6

(
h,

1

1 +
√
1− h

)
=

∂6F

∂s6

(
1−H2,

1

1 +H

)
= 1440H2(1 +H)2 (1−H)4 · g6

(
H,

E(
√
1−H2)

K(
√
1−H2)

)
> 0 (0 < h < 1),

(7.14)

∂7F

∂s7

(
h,

1

1 +
√
1− h

)
=

∂7F

∂s7

(
1−H2,

1

1 +H

)
= −10080H(1 +H)3 (1−H)5 · g7

(
H,

E(
√
1−H2)

K(
√
1−H2)

)
< 0 (0 < h < 1),

(7.15)
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where H :=
√
1− h,

g2(H,u)

:= −2
(
H2 + 1

) (
5H2 + 3H + 5

)
u3

−
(
−12H6 + 4H5 − 37H4 − 22H3 − 37H2 + 4H − 12

)
u2

− 2H2
(
18H4 +H3 + 8H2 +H + 18

)
u+H4

(
15H2 + 2H + 15

)
,

(7.16)

g3(H,u)

:= −2
(
H2 + 1

) (
8H2 + 9H + 8

)
u3

+
(
8H6 − 12H5 + 55H4 + 66H3 + 55H2 − 12H + 8

)
u2

− 2H2
(
19H4 + 3H3 + 10H2 + 3H + 19

)
u+H4

(
17H2 + 6H + 17

)
,

(7.17)

g4(H,u)

:=
(
72H6 − 16H5 − 104H3 − 16H + 72

)
u3

−
(
8H8−64H7+329H6−148H5−258H4−148H3+329H2−64H+8

)
u2

+ 2H2
(
49H6 − 92H5 + 51H4 − 36H3 + 51H2 − 92H + 49

)
u

−H4
(
47H4 − 76H3 + 34H2 − 76H + 47

)
, (7.18)

g5(H,u)

:= −
(
−28H6 − 12H5 + 12H4 + 48H3 + 12H2 − 12H − 28

)
u3

+H
(
8H6 − 95H5 + 36H4 + 110H3 + 36H2 − 95H + 8

)
u2

+ 2H2
(
9H6 − 22H5 + 7H4 − 8H3 + 7H2 − 22H + 9

)
u

−H4
(
9H4 − 20H3 − 2H2 − 20H + 9

)
, (7.19)

g6(H,u)

:=
(
28H6 + 28H5 − 12H4 − 52H3 − 12H2 + 28H + 28

)
u3

−H2
(
65H4 − 17H3 − 80H2 − 17H + 65

)
u2

+ 2H2
(
3H6 − 15H5 +H4 − 4H3 +H2 − 15H + 3

)
u

−H4
(
3H4 − 15H3 − 8H2 − 15H + 3

)
, (7.20)

g7(H,u)

:= 4
(
2H2 + 3H + 2

) (
H4 −H2 + 1

)
u3

− 3H2
(
4H4 +H3 − 2H2 +H + 4

)
u2

− 6H3
(
H4 + 1

)
u+H5

(
3H2 + 2H + 3

)
. (7.21)
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Here, h0 is a real number with h ∈ (1− 312/1002, 1− 1/102) which appears
in Lemma 7.9.

Proof. We get identities in (7.9)-(7.15) by direct calculations. We have
inequality in (7.9) by Lemma 6.4, We obtain (7.10), (7.11), (7.12), (7.13),
(7.14), (7.15) by Lemma 7.7, Lemma 7.9, Lemma 7.10, Lemma 7.11, Lemma
7.12, Lemma 7.13 which we prove in Subsection 7.2. 2

Table 7.1 shows the sign of F (0, h), · · · , ∂8F (0, h)/∂s8 and F (1/(1 +√
1− h), h), · · · , ∂8F (1/(1 +

√
1− h), h)/∂s8, which we will prove in subse-

quent lemmas 7.3-7.6. Here ∗ means +, − or 0.

s = 0 s =
1

1 +
√
1− h

0 < h < 1 0 < h < h0 h = h0 h0 < h < 1

F + − − −

∂F

∂s
− + + +

∂2F

∂s2
+ ∗ − −

∂3F

∂s3
− − 0 +

∂4F

∂s4
+ + + ∗

∂5F

∂s5
− − − −

∂6F

∂s6
+ + + +

∂7F

∂s7
− − − −

∂8F

∂s8
+ + + +

Table 7.1: Signs of F , · · · , ∂8F/∂s8 at s = 0 and s = 1/(1 +
√
1− h)
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Lemma 7.3 Let F (h, u) be defined by (6.20). It holds that

∂F

∂s
(h, 0) =

1

5040h3
· ∂

7F

∂s7
(h, 0) < 0 (0 < h < 1), (7.22)

∂2F

∂s2
(h, 0) =

1

360h3
· ∂

6F

∂s6
(h, 0) > 0 (0 < h < 1), (7.23)

∂3F

∂s3
(h, 0) =

1

20h2
· ∂

5F

∂s5
(h, 0) < 0 (0 < h < 1), (7.24)

∂5F

∂s5
(h, s) < 0

(
0 ≤ h < 1, 0 ≤ s ≤ 1

1 +
√
1− h

)
, (7.25)

∂6F

∂s6
(h, s) > 0

(
0 ≤ h < 1, 0 ≤ s ≤ 1

1 +
√
1− h

)
, (7.26)

∂7F

∂s7
(h, s) < 0

(
0 ≤ h < 1, 0 ≤ s ≤ 1

1 +
√
1− h

)
. (7.27)

Proof. We obtain (7.27) by (7.8) and (7.15). Hence we get (7.26) by (7.27)
and (7.14). Therefore, we obtain (7.25) by (7.26) and (7.13). Thus we obtain
equalities in (7.22), (7.23), (7.24) by Lemma 7.1, and inequalities by (7.27),
(7.26), (7.25) with s = 0. 2

Lemma 7.4 Let F (h, u) be defined by (6.20). It holds that

∂2F

∂s2

(
h0,

1

1 +
√
1− h0

)
< 0, (7.28)

∂4F

∂s4

(
h,

1

1 +
√
1− h

)
> 0 (0 < h ≤ h0) . (7.29)

Proof. We obtain (7.28) by (7.10) and h0 ∈ (1 − 312/1002, 1). We get
(7.29) by (7.12) and h0 ∈ (0, 1− 1/102). Thus we complete the proof. 2

Lemma 7.5 Let h ∈ (0, h0] be fixed. Then, (6.30) in s has the unique
solution.

Proof. Let us fixed h ∈ (0, h0]. We get

∂4F

∂s4
(h, s) > 0

(
0 ≤ s ≤ 1

1 +
√
1− h

)
(7.30)

by (7.29) and (7.25). Hence we obtain

∂3F

∂s3
(h, s) ≤ 0

(
0 ≤ s ≤ 1

1 +
√
1− h

)
(7.31)

by (7.30) and (7.11) with 0 < h ≤ h0.
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On the other hand, we have

∂F

∂s
(h, 0) < 0,

∂F

∂s

(
h,

1

1 +
√
1− h

)
> 0 (7.32)

by (7.22) and (7.9), respectively. Therefore there exists the unique s1(h) ∈
(0, 1/(1 +

√
1− h)) such that

∂F

∂s
(h, s) < 0 (0 ≤ s < s1(h)), (7.33)

∂F

∂s
(h, s1(h)) = 0, (7.34)

∂F

∂s
(h, s) < 0

(
s1(h) < s ≤ 1

1 +
√
1− h

)
(7.35)

by (7.31).
Now, we have

F (h, 0) > 0, F

(
h,

1

1 +
√
1− h

)
< 0 (7.36)

due to (6.27) and (6.28). Consequently, there exists the unique s0(h) ∈
(0, 1/(1 +

√
1− h)) such that

F (h, s) > 0 (0 ≤ s < s0(h)), (7.37)

F (h, s0(h)) = 0, (7.38)

F (h, s) < 0

(
s0(h) < s ≤ 1

1 +
√
1− h

)
(7.39)

by (7.33), (7.34) and (7.35). Thus we complete the proof. 2

Lemma 7.6 Let h ∈ (h0, 1) be fixed. Then, (6.30) in s has the unique
solution.

Proof. Let us fixed h ∈ (h0, 1). We have

∂3F

∂s3
(h, 0) < 0,

∂3F

∂s3

(
h,

1

1 +
√
1− h

)
> 0 (7.40)

by (7.30) and (7.11) with h0 < h < 1, respectively. Hence there exists the
unique s̃3(h) ∈ (0, 1/(1 +

√
1− h)) such that

∂3F

∂s3
(h, s) < 0 (0 ≤ s < s̃3(h)), (7.41)

∂3F

∂s3
(h, s̃3(h)) = 0, (7.42)

∂3F

∂s3
(h, s) > 0

(
s̃3(h) < s ≤ 1

1 +
√
1− h

)
(7.43)
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by (7.25).
On the other hand, we get

∂2F

∂s2
(h, 0) > 0,

∂2F

∂s2

(
h,

1

1 +
√
1− h

)
< 0 (7.44)

by (7.23) and (7.10), respectively. Thus there exists the unique s̃2(h) ∈
(0, 1/(1 +

√
1− h)) such that

∂2F

∂s2
(h, s) > 0 (0 ≤ s < s̃2(h)), (7.45)

∂2F

∂s2
(h, s̃2(h)) = 0, (7.46)

∂2F

∂s2
(h, s) < 0

(
s̃2(h) < s ≤ 1

1 +
√
1− h

)
(7.47)

by (7.41), (7.42) and (7.43).
Moreover, we obtain

∂F

∂s
(h, 0) < 0,

∂F

∂s

(
h,

1

1 +
√
1− h

)
> 0 (7.48)

by (7.22) and (7.9), respectively. Therefore there exists the unique s̃1(h) ∈
(0, 1/(1 +

√
1− h)) such that

∂F

∂s
(h, s) < 0 (0 ≤ s < s̃1(h)), (7.49)

∂F

∂s
(h, s̃1(h)) = 0, (7.50)

∂F

∂s
(h, s) < 0

(
s̃1(h) < s ≤ 1

1 +
√
1− h

)
(7.51)

by (7.45), (7.46) and (7.47).
Now, we have

F (h, 0) > 0, F

(
h,

1

1 +
√
1− h

)
< 0 (7.52)

due to (6.27) and (6.28). Consequently, there exists the unique s̃0(h) such
that

F (h, s) > 0 (0 ≤ s < s̃0), (7.53)

F (h, s̃0) = 0, (7.54)

F (h, s) < 0

(
s̃0 < s ≤ 1

1 +
√
1− h

)
(7.55)

by (7.49), (7.50) and (7.51). Thus we complete the proof. 2
Proof of Proposition 6.6. We obtain conclusions by Lemmas 7.5 and
7.6.2
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7.2 Lemmas for proof of Lemma 7.2

We prepare several lemmas to prove Lemma 7.2.

Lemma 7.7 Let g2(H,u) be defined by (7.16). Then

g2

(
H,

E(
√
1−H2)

K(
√
1−H2)

)
> 0

(
0 < H ≤ 31

100

)
. (7.56)

Proof. We note that the graphs of g2(h, u) is like Figure 7.1.

Figure 7.1: Graphs of g2(h, u) for 9039/10000 < h < 1,
√
1− h < u <

1− h/2.

We may show that

g2(H,u) > 0

(
0 < H ≤ 31

100
, H < u <

1 +H2

2

)
(7.57)

by Lemma 2.1.
We have

g2(H,H) = 2H2(6H4 − 13H3 − 10H2 − 13H + 6)(1−H)2 > 0,

g2,u(H,u) = −6
(
H2 + 1

) (
5H2 + 3H + 5

)
u2

+
(
24H6 − 8H5 + 74H4 + 44H3 + 74H2 − 8H + 24

)
u

− 2H2
(
18H4 +H3 + 8H2 +H + 18

)
,

g2,u(H,H) = 2H
(
12H6 − 37H5 + 27H4 − 16H3 + 27H2 − 37H + 12

)
> 0,

g2,u

(
H,

1 +H2

2

)
=

1

2

(
9H6 − 35H5 + 27H4 − 14H3 + 27H2 − 35H + 9

)
(H + 1)2 > 0
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for 0 < H ≤ 31/100 by virtue of Sturm’s theorem. Hence we obtain (7.57).
Thus we complete the proof. 2

Lemma 7.8 It holds that

d

dH

(
K(

√
1−H2)3

(1−H2)2
· g3

(
H,

E(
√
1−H2)

K(
√
1−H2)

))
< 0 (0 < H < 1). (7.58)

Proof. We have

d

dh

(
K(

√
1−H2)3

(1−H2)2
· g3

(
H,

E(
√
1−H2)

K(
√
1−H2)

))

= − K(
√
1−H2)3

H(1−H)3(1 +H)3
· f

(
H,

E(
√
1−H2)

K(
√
1−H2)

)
, (7.59)

where

f(H,u) := c3(H) · u3 + c2(H) · u2 + c1(H) · u
+H4

(
21H4 − 6H3 − 133H2 − 24H − 30

)
, (7.60)

c1(H) := −3H2
(
18H6 − 8H5 − 63H4 + 24H3 − 45H2 − 14H − 20

)
(7.61)

c2(H) := 3H
(
8H7 − 8H6 − 7H5 + 34H4 − 73H3 − 44H2 − 54H + 4

)
,

(7.62)

c3(H) :=
(
−40H6 − 48H5 + 87H4 + 120H3 + 135H2 + 6H + 8

)
. (7.63)

We may show that

f(H,u) > 0 (0 < H < 1, H < u < 1) (7.64)

by Lemma 2.1.
We obtain

f(H,H) = 10H3(12H5 − 35H4 − 94H3 + 33H2 + 8H + 40)(1−H)2 > 0,

and c3(H) > 0 for H ∈ (0, 1) by Sturm’s theorem. Moreover, we get

fu(H,u) = 3c3(H) · u2 + 2c2(H) · u+ c1(H) > 0 (0 < H < 1),

since

c2(H)2 − 3c3(H) · c1(H)

= −9H2 (H + 1)3
(
−64H11 + 320H10 − 1008H8 − 103H7

−183H6 + 3211H5 − 1837H4 + 1004H3 − 548H2 + 232H + 144
)
< 0,

for 0 < H < 1 by virtue of Sturm’s theorem.
Therefore, we get (7.64). Thus we complete the proof. 2
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Lemma 7.9 There exists the unique h0 ∈ [1− (31/100)2, 1− (1/10)2] such
that

g3

(
√
1− h,

E(
√
h)

K(
√
h)

)
< 0 (0 < h < h0), (7.65)

g3

(
√
1− h,

E(
√
h)

K(
√
h)

)
= 0, (7.66)

g3

(
√
1− h,

E(
√
h)

K(
√
h)

)
> 0 (h0 < h < 1). (7.67)

Proof. We have

g3

 1

10
, E

√1−
(

1

10

)2
/K

√1−
(

1

10

)2
 > 0,

since it holds that

1

10
< E

√1−
(

1

10

)2
/K

√1−
(

1

10

)2
 <

121

400
=

1

4

(
1 +

1

10

)2

by Lemma 2.1, and

g3

(
1

10
, u

)
= −45349u3

2500
+

1855347u2

250000
− 194049u

500000
+

1777

1000000
> 0

(
1

10
< u <

121

400

)
by Sturm’s theorem.

We have

g3

 31

100
, E

√1−
(

31

100

)2
/K

√1−
(

31

100

)2
 < 0,

since it holds that

31

100
< E

√1−
(

31

100

)2
/K

√1−
(

31

100

)2
 < 1

by Lemma 2.1, and

g3

(
31

100
, u

)
= −316740017u3

12500000
+

1501548449781u2

125000000000

− 2033076415239u

500000000000
+

189263623177

1000000000000
< 0

(
31

100
< u < 1

)
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by Sturm’s theorem.
Thus, there exists the unique H0 ∈ (1/10, 31/100) such that

g3

(
H,

E(
√
1−H2)

K(
√
1−H2)

)
> 0 (0 < h < H0),

g3

(
H0,

E(
√

1−H2
0 )

K(
√
1−H2

0 )

)
= 0,

g3

(
H,

E(
√
1−H2)

K(
√
1−H2)

)
< 0 (H0 < h < 1).

Consequently we complete the proof by putting h := 1 − H2 and h0 :=
1−H2

0 .2

Lemma 7.10 Let g4(H,u) be defined by (7.18). Then

g4

(
H,

E(
√
1−H2)

K(
√
1−H2)

)
> 0

(
1

10
≤ H < 1

)
. (7.68)

Proof. We note that the graphs of g4(h, u) is like Figure 7.2.

Figure 7.2: Graphs of g4(h, u) for 0 < h < 99/100,
√
1− h < u < 1− h/2.

We may show that

g4(H,u) > 0

(
1

10
≤ H < 1, H < u <

1 +H2

2

)
(7.69)

by Lemma 2.1.
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We have

g4(H,H) = 2H2(−4H4 + 101H3 + 140H2 + 101H − 4)(1−H)4 > 0,

g4,u(H,H) = 2H(−8H6 + 205H5 − 27H4 − 60H3 − 27H2 + 205H − 8)

· (1−H)2 > 0,

g4,uu(H,u) = 2
(
216H6 − 48H5 − 312H3 − 48H + 216

)
u

− 16H8 + 128H7 − 658H6 + 296H5 + 516H4

+ 296H3 − 658H2 + 128H − 16,

g4,uu(H,H) = −16H8 + 560H7 − 754H6 + 296H5 − 108H4

+ 296H3 − 754H2 + 560H − 16 > 0,

g4,uu

(
H,

1 +H2

2

)
= 2(100H6 − 160H5 −H4 + 130H3 −H2 − 160H + 100)(H + 1)2 > 0

for 1/10 ≤ H < 1 by virtue of Sturm’s theorem. Hence we obtain (7.69).
Thus we complete the proof. 2

Lemma 7.11 Let g5(H,u) be defined by (7.19). Then

g5

(
H,

E(
√
1−H2)

K(
√
1−H2)

)
> 0 (0 < H < 1) . (7.70)

Proof. We note that the graphs of g5(h, u) is like Figure 7.3.

Figure 7.3: Graphs of g5(h, u).

We may show that

g5(H,u) > 0 (0 < H < 1, H < u < 1) (7.71)
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by Lemma 2.1.
We have

g5(H,H) = 2H3(27H2 + 40H + 27)(1−H)4 > 0,

g5,u(H,H) = 2H2(59H4 + 19H3 + 4H2 + 19H + 59)(1−H)2 > 0,

g5,uu(H,u) = 2
(
84H6 + 36H5 − 36H4 − 144H3 − 36H2 + 36H + 84

)
u

+ 2H
(
8H6 − 95H5 + 36H4 + 110H3 + 36H2 − 95H + 8

)
,

g5,uu(H,H) = 2H(92H6 − 59H5 − 34H3 − 59H + 92) > 0,

g5uu(H, 1) = 2(H + 1)(8H6−19H5+91H4−17H3−91H2−40H+84) > 0

for 0 < H < 1 by virtue of Sturm’s theorem. Hence we obtain (7.71). Thus
we complete the proof. 2

Lemma 7.12 Let g6(H,u) be defined by (7.20). Then,

g6

(
H,

E(
√
1−H2)

K(
√
1−H2)

)
> 0 (0 < H < 1) . (7.72)

Proof. We note that the graphs of g6(h, u) is like Figure 7.4.

Figure 7.4: Graphs of g6(h, u).

We may show that

g6(H,u) > 0 (0 < H < 1, H < u < 1) (7.73)

by Lemma 2.1.
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We have

g6(1−H2, u) = 2H3(17H4 −H3 − 8H2 −H + 17)(1−H)2 > 0,

g6,u(H,H) = 2H2(45H6 − 38H5 − 2H3 − 38H + 45) > 0,

g6,uu(H,u) = 2
(
84H6 + 84H5 − 36H4 − 156H3 − 36H2 + 84H + 84

)
u

− 2H2
(
65H4 − 17H3 − 80H2 − 17H + 65

)
,

g6,uu(H,H) = 2H(84H6 + 19H5 − 19H4 − 76H3 − 19H2 + 19H + 84) > 0,

g6,uu(H, 1) = 2(H + 1)(19H5 + 82H4 − 38H3 − 101H2 + 84) > 0

for 0 < H < 1 by virtue of Sturm’s theorem. Hence we obtain (7.73). Thus
we complete the proof. 2

Lemma 7.13 Let g7(H,u) be defined by (7.21). Then

g7

(
H,

E(
√
1−H2)

K(
√
1−H2)

)
> 0 (0 < H < 1) . (7.74)

Proof. We note that the graphs of g7(h, u) is like Figure 7.5.

Figure 7.5: Graphs of g7(h, u).

We may show that

g7(H,u) > 0 (0 < H < 1, H < u < 1) (7.75)

by Lemma 2.1.
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We have

g7(H,u) = 2H3(4H4 + 5H3 + 6H2 + 5H + 4)(1−H)2 > 0,

g7,u(H,H) = 6H2(4H6 +H5 −H4 − 4H3 −H2 +H + 4) > 0,

g7,uu(H,u) = 24
(
2H2 + 3H + 2

) (
H4 −H2 + 1

)
u

− 6H2
(
4H4 +H3 − 2H2 +H + 4

)
,

g7,uu(H,H) = 6H(8H6 + 8H5 −H4 − 10H3 −H2 + 8H + 8) > 0,

g7,uu(H, 1) = 6(H + 1)(4H5 + 7H4 − 5H3 − 8H2 + 4H + 8) > 0

for 0 < H < 1 by virtue of Sturm’s theorem. Hence we obtain (7.75). Thus
we complete the proof. 2
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8 Proof of Theorem 3.8

In this section, we show the existence of secondary bifurcation point, and
give a proof of Theorem 3.8.

We note that m(1, ε2) = 2 (0 < ε2 < 1/π2). We see that

∂m(Ṽ , ε2)

∂Ṽ

∣∣∣∣∣
Ṽ=1

= 0

(
0 < ε2 <

1

π2

)
(8.1)

is equivalent to

∂m(Ṽ (h, s), ε2(h, s))

∂h

∣∣∣∣∣
s= 1

1+
√

1−h

= 0 (0 < h < 1) , (8.2)

which implies

1

2(1 +
√
1− h)(2− h)3/2

(
2− h

1− h
· E(

√
h)

K(
√
h)

− 8

)
= 0 (0 < h < 1) . (8.3)

It holds that (8.3) has the unique solution h = h∗ with h∗ = 0.952 · · · , and

m(Ṽ (h∗, s∗), ε
2(h∗, s∗)) = 2, (8.4)

mh(Ṽ (h∗, s∗), ε
2(h∗, s∗)) = 0, (8.5)

ms(Ṽ (h∗, s∗), ε
2(h∗, s∗)) = 0. (8.6)

Here, s∗ = 1/(1+
√
1− h∗) = 0.821 · · · and ε2∗ = ε2(h∗, s∗) = (0.2353 · · · )2 =

0.055 · · · . By simple computation, we get

mhh(Ṽ (h∗, s∗), ε
2(h∗, s∗)) = Pos.Const. ·

(
5h2∗ − 12h∗ − 12

)
> 0, (8.7)

mss(Ṽ (h∗, s∗), ε
2(h∗, s∗)) = Const. ·

(
2− h∗
1− h∗

· E(
√
h∗)

K(
√
h∗)

− 8

)
= 0, (8.8)

msss(Ṽ (h∗, s∗), ε
2(h∗, s∗)) > 0. (8.9)

Hence we see from Taylor’s expansion at h = h∗ that

m(Ṽ (h, s∗), ε
2(h, s∗)) > 2 (8.10)

for h > h∗ sufficiently close to h∗. On the other hands, we obtain from
Taylor’s expansion at s = s∗ that

m(Ṽ (h∗, s), ε
2(h∗, s)) < 2 (8.11)

for s < s∗ sufficiently close to s∗.
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Therefore, we see that there exist ℓ1 and ℓ2 with 0 < ℓ1 < ℓ2 such that

m(Ṽ , ℓ1(Ṽ − 1) + ε2∗) < 2 (Ṽ < 1 sufficiently close to 1) (8.12)

and

m(Ṽ , ℓ2(Ṽ − 1) + ε2∗) > 2 (Ṽ < 1 sufficiently close to 1). (8.13)

By Theorem 3.4 (ii), we obtain

ε2(Ṽ ) → ε2∗ as Ṽ ↑ 1. (8.14)

Therefore, it following from (1.12), that

ε2(Ṽ ) → ε2∗ as Ṽ ↓ 1. (8.15)

We explain the meaning of the above argument intuitively. Figure 8.1
shows graphs of m(Ṽ , ε2) for each fixed ε2.

Figure 8.1: m(Ṽ , ε2) for each ε2
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Figure 8.2 and 8.3 show curves in the parameter space, h−s−m space,
and corresponding curves in Ṽ−ε2−m space, respectively.

Figure 8.2: Secondary bifurcation point and curves in h−s−m space

Figure 8.3: Secondary bifurcation point and curves in Ṽ −ε2−m space
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9 Numerical results about the stability

Let us explain the stability of solutions of (SLP) observed by numerical
computations. Let us see Figure 9.1. Stationary solutions corresponding to
the points on the thick lines are locally stable and those on the broken lines
are unstable.

Figure 9.1: Stability of solutions of (SLP)

We show several figures to see the behavior of solutions of (TLP) in
Figures 9.2-9.33. Left column are profiles of W (x, t), and right column are
profiles of Ṽ (t).

Figures 9.2-9.9 show the case m = 1.5 and ε = 0.0576. Initial values are
taken as Ṽ (0) = 1.325581, W (x, 0) = W (x; Ṽ (0), ε2), where W (x; Ṽ (0), ε2)
is a numerical computed solution of (SLP) with m = 1.5. It seems that
Ṽ (t) → 1.000112 and W (x, t) → W (x; 1.000112, ε2) as t → ∞ numerically,
where W (x; 1.000112, ε2) is a numerical computed another solution of (SLP)
on the same bifurcation curve with m = 1.5.

Figures 9.10-9.17 show the case m = 2 and ε = 0.032854. Initial values
are taken as Ṽ (0)=0.53846, W (x, 0) =W (x; Ṽ (0), ε2), whereW (x; Ṽ (0), ε2)
is a numerical computed solution of (SLP) with m = 2. It seems that
Ṽ (t)→1 andW (x, t) → W (x; 1, ε2) as t → ∞ numerically, whereW (x; 1, ε2)
is a numerical computed symmetric solution of (SLP).
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Figure 9.2: m = 1.5, Ṽ (0) = 1.32558, ε = 0.0576, t = 0

Figure 9.3: m = 1.5, Ṽ (0) = 1.32558, ε = 0.0576, t = 1

Figure 9.4: m = 1.5, Ṽ (0) = 1.32558, ε = 0.0576, t = 1.083333

Figure 9.5: m = 1.5, Ṽ (0) = 1.32558, ε = 0.0576, t = 1.166667
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Figure 9.6: m = 1.5, Ṽ (0) = 1.32558, ε = 0.0576, t = 1.472222

Figure 9.7: m = 1.5, Ṽ (0) = 1.32558, ε = 0.0576, t = 1.805556

Figure 9.8: m = 1.5, Ṽ (0) = 1.32558, ε = 0.0576, t = 2.277778

Figure 9.9: m = 1.5, Ṽ (0) = 1.32558, ε = 0.0576, t = 25.944444
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Figure 9.10: m = 2, Ṽ (0) = 0.53846, ε = 0.032854, t = 0

Figure 9.11: m = 2, Ṽ (0) = 0.53846, ε = 0.032854, t = 0.777778

Figure 9.12: m = 2, Ṽ (0) = 0.53846, ε = 0.032854, t = 0.888889

Figure 9.13: m = 2, Ṽ (0) = 0.53846, ε = 0.032854, t = 1.138889
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Figure 9.14: m = 2, Ṽ (0) = 0.53846, ε = 0.032854, t = 1.694444

Figure 9.15: m = 2, Ṽ (0) = 0.53846, ε = 0.032854, t = 1.972222

Figure 9.16: m = 2, Ṽ (0) = 0.53846, ε = 0.032854, t = 2.805556

Figure 9.17: m = 2, Ṽ (0) = 0.53846, ε = 0.032854, t = 14.694444
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Figure 9.18: m = 2.5, Ṽ (0) = 0.88679, ε = 0.074015, t = 0

Figure 9.19: m = 2.5, Ṽ (0) = 0.88679, ε = 0.074015, t = 4.722222

Figure 9.20: m = 2.5, Ṽ (0) = 0.88679, ε = 0.074015, t = 5

Figure 9.21: m = 2.5, Ṽ (0) = 0.88679, ε = 0.074015, t = 5.277778
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Figure 9.22: m = 2.5, Ṽ (0) = 0.88679, ε = 0.074015, t = 6.111111

Figure 9.23: m = 2.5, Ṽ (0) = 0.88679, ε = 0.074015, t = 6.944444

Figure 9.24: m = 2.5, Ṽ (0) = 0.88679, ε = 0.074015, t = 8.333333

Figure 9.25: m = 2.5, Ṽ (0) = 0.88679, ε = 0.074015, t = 64.166667
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Figure 9.26: m = 3, Ṽ (0) = 2.5, ε = 0.255369, t = 0

Figure 9.27: m = 3, Ṽ (0) = 2.5, ε = 0.255369, t = 1.25

Figure 9.28: m = 3, Ṽ (0) = 2.5, ε = 0.255369, t = 1.527778

Figure 9.29: m = 3, Ṽ (0) = 2.5, ε = 0.255369, t = 1.666667
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Figure 9.30: m = 3, Ṽ (0) = 2.5, ε = 0.255369, t = 1.944444

Figure 9.31: m = 3, Ṽ (0) = 2.5, ε = 0.255369, t = 2.222222

Figure 9.32: m = 3, Ṽ (0) = 2.5, ε = 0.255369, t = 2.638889

Figure 9.33: m = 3, Ṽ (0) = 2.5, ε = 0.255369, t = 4.027778
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Figures 9.18-9.25 show the casem=2.5 and ε=0.074015. Initial values are
taken as Ṽ (0) = 0.886792, W (x, 0) =W (x; Ṽ (0), ε2), where W (x; Ṽ (0), ε2)
is a numerical computed solution of (SLP) with m = 2.5. It seems that
Ṽ (t) → 0.998178 and W (x, t) → W (x; 0.998178, ε2) as t → ∞ numerically,
where W (x; 0.998178, ε2) is a numerical computed another solution of (SLP)
on the same bifurcation curve with m = 2.5.

Figures 9.26-9.33 show the case m = 3 and ε = 0.255369. Initial values
are taken as Ṽ (0)=2.5, W (x, 0) = W (x; Ṽ (0), ε2), where W (x; Ṽ (0), ε2) is a
numerical computed solution of (SLP) with m = 3. It seems that Ṽ (t) → 1
and W (x, t) → 2 as t → ∞ numerically.
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10 Concluding remarks

In this paper we have clarified all global bifurcation curves for a cell
polarization model. We have given answers of following problems:

• Existence and nonexistence of all global bifurcation curves for all
given m?

• Direction and connection of bifurcation curves?
• Existence and uniqueness of the secondary bifurcation point?

Results are the first ones to clarify the existence and nonexistence of all
global bifurcation curves including the unique existence of the secondary
bifurcation point.

There are several things to be solved:
• Critical points of each global bifurcation curve.
• The stability.
• The global bifurcation curves of original cell polarization model
for finite D.

Acknowledgments

I would like to express my sincere to my advisor Professor Yotsutani for
his encouragement and support.

This work is based on joint works with Professors Kousuke Kuto, Masa-
haru Nagayama, Tohru Tsujikawa and Shoji Yotsutani.

I am grateful to Prof. Kuto, Prof. Nagayama and Prof. Tsujikawa for
valuable comments and discussions.

81



References

[1] (MR0759767) J.Carr, M.E.Gurtin and M.Semrod, Structured phase
transitions on a finite interval, Arch. Rational Mech. Anal., 86 (1984),
317–351.

[2] S.Ishihara, M.Otsuji and A.Mochizuki, Transient and steady state of
mass-conserved reaction-diffusion systems, Phys. Rev. E 75 015203(R)
(2007).

[3] (MR2342265) S.Kosugi，Y.Morita and S.Yotsutani， Stationary solu-
tions to the one-dimensional Cahn-Hilliard equation: Proof by the com-
plete elliptic integrals，Discrete Contin. Dyn. Syst. Ser. A, 19 (2007),
609–629．

[4] (MR2670187) K.Kuto and T.Tsujikawa， Stationary patterns for an
adsorbate-induced phase transition model I， Discrete Contin. Dyn.
Syst. Ser. B, 14 (2010) no. 3, 1105-1117．

[5] (MR3043381) K.Kuto and T.Tsujikawa， Stationary patterns for an
adsorbate-induced phase transition model II，Nonlinearity, 26 (2013),
1313-1343.

[6] K.Kuto and T.Tsujikawa， Bifurcation structure of steady-states for
bistable equations with nonlocal constraint，Discrete Contin. Dyn. Syst.
Supp., 2013，467–476．

[7] (MR2026204) Y.Lou, W-M.Ni and S.Yotsutani, On a limiting system
in the Lotka-Voltera competition with cross diffusion, Discrete Contin.
Dyn. Syst., 10 (2004), 435–458.

[8] T.Mori, K.Kuto, T.Tujikawa, M.Nagayama and S.Yotsutani, Global
bifurcation sheet and diagrams of wave-pinning in a reaction-diffusion
model for cell polarization, Dynamical Systems, Differential Equations
and Applications AIMS Proceedings, 2015, 861–877.

[9] T.Mori, K.Kuto, T.Tujikawa, S.Yotsutani, Exact multiplicity of sta-
tionary limiting problem of a cell polarization model, Discrete Contin.
Dyn. Syst. Ser. A, (2016), to appear.

[10] Y.Mori，A.Jilkine and L.Edelstein-Keshet，Wave-pinning and cell po-
larity from a bistable reaction-diffusion system，Biophys．J., 94 (2008)，
3684–3697．

[11] (MR2835240) Y.Mori, A.Jilkine and L.Edelstein-Keshet, Asymptotic
and bifurcation analysis of wave-pinning in a reaction-diffusion model
for cell polarization，SIAM J．Appl．Math, 71 (2011)，1401–1427．

82



[12] M.Otsuji, S.Ishihara, C.Co, et al., A mass conserved reaction-diffusion
system captures properties of cell polarity, PLoS Compt. Biol. 3: e108
(2007).

[13] (MR1301779) J.Smoller, Shock Waves and Reaction Diffusion Equa-
tions, Springer, 1994.

[14] (MR0607786) J.Smoller and A.Wasserman, Global bifurcation of steady-
state solutions, J.Differential Equations., 39 (1981), 269–290.

83


